XYZ Micropositioning System Based on Compliance Mechanisms Fabricated by Additive Manufacturing
This article presents the design and implementation of a micropositioning system actuated by three piezoelectric stacks to control its displacements on XYZ axes. The use of conventional piezoelectric buzzers allows us to reduce fabrication costs. The working or mobile platform is the base for objects that will be manipulated, for example, in automated assembling. The micropositioner can be integrated into a microgripper to generate a complete manipulation system. For micropositioner fabrication, at first, Polylactic Acid (PLA) was chosen as the structural material, but after simulation and some experimental tests performed with a micropositioner made of Acrylonitrile Butadiene Styrene (ABS), it showed larger displacement (approx. 20%) due to its lower stiffness. A third test was performed with a positioner made with Polyethylene Terephthalate Glycol (PETG), obtaining an intermediate performance. The originality of this work resides in the geometrical arrangement based on thermoplastic polymer compliance mechanisms, as well as in the use of additive manufacturing to fabricate it. An experimental setup was developed to carry out experimental tests. ANSYS™ was used for simulation.
Tipo de documento: Artículo
Formato: Adobe PDF
Audiencia: Investigadores
Idioma: Inglés
Área de conocimiento: INGENIERÍA Y TECNOLOGÍA
Campo disciplinar: CIENCIAS TECNOLÓGICAS
Nivel de acceso: Acceso Abierto
Comparte