

Programación Matemática y Software (2010)
Vol. 2. No 2. ISSN: 2007-3283

Recibido: 22 de Marzo de 2010 Aceptado: 27 de Agosto de 2010

Publicado en línea: 30 de Diciembre de 2010

The use of Parallel Axtensions Libraries for Scientific and Engineering Calculations.

Gennadiy Burlak1, José Alberto Hernández Aguilar2, René Santaolaya Salgado3, Moisés González

Garcia3

1Centro de Investigación en Ingeniería y Ciencias Aplicadas,
2Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001

Col. Chamilpa CP62209 Cuernavaca, Mor. México gburlak@uaem.mx
,

3Departamento de Ciencias Computacionales, Centro Nacional de
Investigación y Desarrollo Tecnológico CENIDET, Cuernavaca, Mor., México

Resumen. Estudiamos el uso de la biblioteca de Ampliación Paralela de Microsoft de la Estructura
.NET 3.5 para cálculos paralelos. Hemos desarrollado una jerarquía de clases anidadas que tienen
una estructura interna complicada y hemos hecho las pruebas de laboratorio (con una interfase
gráfica de usuario (GUI)) no sólo para los casos estáticos simples sino también para los tipos
dinámicos complicados. Nuestras pruebas han mostrado la alta velocidad de la biblioteca. El uso
de otras bibliotecas que permiten los cálculos en paralelo para distintas aplicaciones
multiplataforma también es discutido.

Palabras Clave. parallel calculations, hierarchy of nesting classes, cross-platform applications.

Abstract. We studied the use of the library Microsoft Parallel Extensions to .NET Framework 3.5
for parallel calculations. We have developed a hierarchy of nesting classes having complicated
internal structure and have made the bench tests (with graphic user interface (GUI)) not only for
simple static cases but also for complex dynamic types. Our tests have shown high speedup of the
library. The use of other libraries allowing calculations in parallel for various cross-platform
applications is discussed also.

2 Gennadiy Burlak, José Alberto Hernández Aguilar, René Santaolaya Salgado,Moisés González
Garcia

1. Introduction

Dual cores PCs have gradually become the

standard in Universities. Quad core PCs are

also getting closer, and PCs with greater

number of CPUs/cores are also available.

Modern scientific problems require large

amounts of computational tasks which are

well time consuming. Sometimes parallel/

distributed computing of such problems is of

critical importance [1], [2]. Nowadays

developers have access to PCs with several

CPUs/cores; so there is a great task to use

the whole computing power of such PCs in

order to load all the cores to work effectively

in parallel.

Recently was published the Parallel

Extensions to .NET Framework 3.5

Community Technology Preview (CTP) that

provides a managed programming model for

data parallelism, task parallelism, and

coordination on parallel hardware unified.

Parallel Extensions makes it easier for

developers to write programs that scale to

take advantage of parallel hardware by

providing improved performance as the

numbers of cores and processors. Parallel

Extensions provides library based support for

introducing concurrency into applications

written with .NET languages, including e.g.

C#. In this release various samples of the

library were used for time consuming

problems calculating sequentially and in

parallel was done (solve nqueen puzzle,

sorting example, simple matrix multiplication,

etc). However in the samples mainly was

used a data with simple numeric static

structure. For instance, the product of

random double matrixes with large size was

sequentially and in parallel processed. For

such configurations it was demonstrated that

performance of in parallel calculations gives

an essential speedup of calculations.

However in engineering calculations

frequently one meets more advanced

problems in which it is necessary to use the

dynamic data with complicated internal

structure. Typical example is calculations

with complex numbers, Fast Fourier

transformations, various numeric

transformations with complex matrixes and

vectors. Such structures normally must serve

as dynamically distributed objects rather than

being static ones. For such situations in

parallel calculations are of great practical

importance. It is well known that among the

popular programming languages only

FORTRAN and PYTHON have in-built

complex data type. In languages as C++ and

C# such types have to be created by

programmers.

However in languages C ++ and C# we meet

other much more important feature:

possibility to overload of the standard

mathematical operators: addition,

subtraction, multiplication and division that

The use of Parallel Axtensions Libraries for Scientific and Engineering Calculations 3

allows to extend considerably the meaning of

such operators. The operator overloading

allows constructing much more advanced

numeric (and not only numeric) classes,

such as a complex vectors and matrices

having quite complicate behavior. However

speedup of such structures in parallel mode

still has been poorly considered,

though it is a logical extension of previous

investigation in this area.

In this Report we discuss the

computations in parallel for C# that

allows distributing the appropriate tasks

effectively at all cores available in the

system. We will take a very brief look at

what is provided by Microsoft's in

Microsoft Parallel Extensions to .NET

Framework 3.5. The main aim is to

discuss how to implement parallelism

for dynamic hierarchies of classes with

advanced internal structure. We

developed and applied such hierarchy

of the nesting classes (complex

matrixes and complex vectors) as

working structures at in parallel

calculations and have performed the

bench tests. Also we have compared

our results with parallel computations for

other library.

2. The structure of classes and working

examples.

Fig.1 shows the structure of our nested

classes for complex numbers, vectors

and matrixes. One can see that

structural complexity of such objects is

much deeper with respect to a simple

double type. For evaluation of real

meaning of the MS parallel library it is

important to investigate the speedup of

calculation in parallel for such advanced

structures.

4 Gennadiy Burlak, José Alberto Hernández Aguilar, René Santaolaya Salgado,Moisés González Garcia

Fig.1. Logic diagram and structures of nested
classes used in our calculations.

In order to make bench tests of in parallel

calculations we used MS VS C# 2008

Express Edition, see Fig.PicrkVS. To handle

advanced calculations we had to extend

essentially the code of a testing program.

The elaboration consists in the following. i)

The program was added part of code that

allow working with dynamic objects, and ii)

the graphic user interface (GUI) has been

created. The latter allow selecting the type

of test, and also a desired dimension of the

complex matrixes. Details of our calculations

and GUI are depicted in Fig.2. We have

performed the bench tests of library mainly

for one of must frequently used in parallel

libraries the cycle operator Parallel.For. We

did it not only for static numeric data, but

also for complex dynamic structures.

Results of this work are shown in Fig. 3 and

summarized in Table 1.

The following technique was used to create

the parallel loops over iteration spaces. For

example, let's parallelize the loop, where the

iteration range is based on doubles (for

further references see [3])

for(int i = 0; i<1000; i ++)
{

Process(i);
}

The CTP Parallel.For(,,) only contains

overloads For where the iteration variable.

As an example, the previously shown loop

could be rewritten as:

Parallel.For(0, 1000, i => //using a lambda
expression
{

 double d = i / 1000.0;
 Process(d);
});

The pseudocode for multiplication of

dynamic complex matrices by means of

sequential processing and parallel

processing is shown below:

The use of Parallel Axtensions Libraries for Scientific and Engineering Calculations 5

Double ParallelMultiplicationOfComplexMatrix(N)

Imaginary number I;
Integer MATRIX_SIZE = N

#Construction of dynamic matrices
MatrixComplex m1a =
MatrizComplex(MATRIZ_SIZE)
MatrixComplex m2a =
MatrizComplex(MATRIZ_SIZE)
MatrixComplex m1 =
MatrizComplex(MATRIZ_SIZE)
MatrixComplex m2 =
MatrizComplex(MATRIZ_SIZE)

Fill Matrices with random Numbers
for i=0 to (MATRIZ_SIZE-1) with increments of 1
 for j=0 to (MATRIZ_SIZE-1) with increments of 1
 m1a[i, j] = m1[i, j] = generate_rnd_number() +
I * generate_rnd_number()
 m2a[i, j] = m2[i, j] = generate_rnd_number() +
I * generate_rnd_number()

Sequential product
Timer.start()
m3 = ProductSequential(m1a, m2a)
Timer.stop()
SequentialTime = Timer.getdifference()

m3 =null

Parallel product (Lambda operator =>)
Timer.start()
=> m3 = m1 * m2
Timer.stop()

ParallelTime = Timer.getdifference()

Ratio calculation
ratio = SequentialTime/ParallelTime
return ratio
End ParallelMultiplicationOfComplexMatrix

 Figure
Fig. 2. In parallel calculations were tested in MS

VS C\# 2008 Express Edition.

Getting the full workload of multicore

processors can be tricky because, in order for

a program to make use of more than one

core, it must divide its workload in such a way

that it does not take more effort than the

gains achieved by adding more cores. Most

programming languages were written

assuming just one processor would be

working through the code sequentially, line by

line [8]. Above example shows that is really

easy to add parallel processing using

functional programming and C# extensions.

CTP library is quite powerful, easy to use,

and provides a lot of different features, which

allow solving the different tasks of parallel

computations. It provides much more than

just a single Parallel.For(). However, there

are some issues, which may require other

solution for following reasons:

1. The parallel computations extension

is targeted for .NET framework 3.5.

Recently the .NET Framework 4 Beta 1

is available for download [4]. However,

some applications may still want to

support earlier .NET framework

versions, like 2.0, for example that

makes difficult for them to use this

6 Gennadiy Burlak, José Alberto Hernández Aguilar, René Santaolaya Salgado,Moisés González
Garcia

extension. The parallel computations

extension is not yet included into the

standard .NET framework installation,

and requires components that could not

be installed on a target system.

2. The parallel computations extension

provided by Microsoft is aimed to run

on Windows systems. However

sometimes it is necessary to develop

the cross platform applications that also

has to run on Linux, e.g. under the

Mono environment. In this situation one

will be left without the paralleling

support.

 Figure
Therefore further we give attention to the

bench tests of parallel CTP library and the

parallel library AFORGE [5]. In the latter the

use of the dynamic module AFORGE.DLL is

required only. This library represents a

particular interest as it allows in parallel

calculation not only in Windows, but also on

cross-platform situations, for example in

system Mono Linux. In this Report the

following data types were used to in parallel

bench tests:

Fig.3. Simple graphic user interface and our
bench tests for in parallel calculations.

1) static array double [,];
2) dynamic array double [,];
3) static array TcompD [,];
4) dynamic array TcompD [,];

5) dynamic class TCompMatrix and
TCompVector with the operators overloading;

The use of Parallel Axtensions Libraries for Scientific and Engineering Calculations 7

The speedup factor K is defined as K =

T_paral/T_seq, where T_paral is

average time of in parallel calculation,

while T_ seq is the calculating average

time in a sequentially regime. Table 1

summarizes our calculations. A

computer with Windows XP SR.3, Intel

Core2 duo CPU processor (two

processors), and frequency of 2.0 GHz

was used.

3. Results and Discussion

Table 1. The speedup factor K of calculations in parallel.

Type of data CTP,
200x200

Aforge,
200x200

CTP,
400x400,

Aforge,
400x400

static matrixes:
double[,]

1.94 1.72 1.98 1.98

dynamic
matrixes:
double[,]

 2.04 1.75 2.03 1.80

complex static
TcompD[,]

 1.72 1.74

 1.72 1.82

complex
dynamic
TcompD[,]

 1.67 1.76 1.70 1.75

Multiplication
objects
TCompMatrix()

 1.675 1.76 1.70 1.7

Mult.
TCompMatrix()
and
TCompVector()

 2.36 2.24 2.38 2.27

We observe that performance in parallel

computations is 0.75, from mean number of

speedup factor K from Table 1, which is

evaluated in a simple way, 1.75-1=0.75,

which exceds the sequential calculations. The

speedup of Aforge library is comparable with

CTP library at least for Parallel.For

operator.For completeness it is worth noting

one interesting project that was developed in

Parallel Language Research Project, see [6].

Besides we have to refer to other more

classical direction of Message Passing

Interface (MPI). MPI.NET is a high-

performance, easy-to-use implementation of

the Message Passing Interface (MPI) for

Microsoft's .NET environment, for further

references see [7].

Now almost all new servers and

computers are running processors with

multiple cores, and the software-design

community is trying to figure out the

best way of making use of this new

architecture. Now is possible to use

state of the art models and parallel

computing programming languages

like Chapel [9] or X10 [10], but if we

analyze the sucessful of programming

languajes like Java or C# in last

decade, they felt familiar so it was easy

to adopt them. According to [11] People

with legacy code need tools that have

strong attention to the languages they

have written and give them an

incremental approach to add

parallelism. If languages like X10 and

Chapel do turn out to be popular, their

8 Gennadiy Burlak, José Alberto Hernández Aguilar, René Santaolaya Salgado,Moisés González
Garcia

advancements will be integrated into

more popular languages.

4. Conclusions

We studied the use of the library

Microsoft Parallel Extensions CTP to

.NET Framework 3.5 for calculations in

parallel. In order to make the test

deeper we developed dynamic

hierarchies of classes having

complicated internal structures that

were applied as working example of

advanced objects. Our testing program

with graphic user interface (GUI) has

allowed us to concentrate various

bench tests. In result we have found

that for advanced data the performance

in parallel at least on 70%-80% and

even more can exceed the sequential

calculations. We believe using

extensions like the proposed in this

paper are the best approach to include

parallel processing into new

developments.

Referencias.

[1] Are Magnus Bruaset, Aslak Tveito,

Numerical Solution of Partial

Differential Equations on Parallel

Computers (Lecture Notes in

Computational Science and

Engineering), Springer, 2006.

[2] Wenhua Yu, Raj Mittra, Tao Su, e.a.,

Parallel Finite-Difference Time-Domain

Method, Artech House Publishers,

2006.

[3] Eric Eilebrecht's blog,

http://blogs.msdn.com/ericeil/archive/2

009/04/23/clr-4-0-threadpool-

improvements-part-1.aspx

[4] Visual Studio 2010 and .NET

Framework 4 Beta 1,

http://msdn.microsoft.com/es-

mx/netframework/dd582936(en-

us).aspx

[5] GNC.com: Does parallel processing

require new languages?,

http://www.gcn.com/Blogs/Tech-

Blog/2009/06/New-parallel-processing-

languages.aspx.

[6] AForge.NET,

http://www.aforgenet.com.

[7] Parallel Language Research Project,

http://www.parallelcsharp.com.

[8] MPI.NET: High-Performance C# Library

for Message Passing,

http://www.osl.iu.edu/research/mpi.net;

http://www.osl.iu.edu/research/mpi.net/

software.

[9] Chapel: The Cascade High-Productivity

Language, http://chapel.cray.com/

[10] X10: The New Concurrent

Programming Language for Multicore

and Petascale Computing, http://x10-

lang.org/

[11] Reinders, James. Intel

Threading Building Blocks

Outfitting C++ for Multi-core

Processor Parallelism. Publisher

The use of Parallel Axtensions Libraries for Scientific and Engineering Calculations 9

O'Reilly Media, 2007.

Burlak, Gennadiy, gburlak@uaem.mx
Centro de Investigación en Ingenierías y

Ciencias Aplicadas (CIICAp), UAEM

Tel: (777) 329 70 84 ext. 6219.

SEMBLANZA CURRICULAR

En 1975 estudio la Licenciatura y Maestría

en la Universidad Nacional de Kiev (KNU),

en la Facultad de Física y en el

Departamento de Física Teórica. El

Ph.D.(candidato en Ciencias físico -

matemáticas) y el D.Sc. (Doctor en

Ciencias físico matemáticas), los obtuvo

también en la KNU en 1979 y 1988,

respectivamente. Actualmente es

Profesor-Investigador Titular “C” definitivo

del Centro de Investigaciones en

Ingeniería y Ciencias Aplicadas (CIICAp)

de la Universidad Autónoma del estado de

Morelos (UAEM), desde 1998. El Dr.

Burlak es autor y coautor de cuatro libros y

116 artículos en revistas arbitradas. Ha

participado en 118 ponencias en

congresos nacionales e internacionales.

Destaca su labor en la formación de

recursos humanos, en los últimos tres

años, ha dirigido 2 tesis de doctorado, 3

de maestría y 1 de licenciatura. Desde

2000 es miembro del Sistema Nacional de

Investigadores, donde tiene el nivel II. Es

miembro regular de la Academia de

Ciencias de Morelos, de la American

Physical Society (1994 - a la fecha). Se

desempeñó también como Arbitro del

CONACyT de proyectos de Investigación

Científica Básica y como Referee de las

revistas internacionales “Physics Letters

A”;“ Physica-D”.

LINEAS DE INVESTIGACION

• Las investigaciones de multicapas micro

esféricas, optimización de los parámetros

electromagnéticos y radiación óptica de

micro-esferas activas cubiertas.

• Óptica cuántica. Emisión espontanea.

Entanglement.

• Los problemas de interacciones de

ondas

no-lineales en solidos limitados, fibras,

guías

de ondas de la óptica integrada, formacion

de estructuras disipativas. Dinámica no

lineal

del Bose-Einstein condensate.

