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Chapter One

Introduction
We present a method to implement relativistic corrections to the evo-
lution of dark matter structures in Newtonian simulations of a ΛCDM

universe via the initial conditions. We take the nonlinear correspondence
between the Lagrangian (Newtonian) evolution of dark matter inhomo-
geneities and the synchronous-comoving (relativistic) matter density de-
scription, and use it to promote the relativistic constraint as the initial
condition for numerical simulations of structure formation. In this case,
the incorporation of Primordial non-Gaussianity (PNG) contributions as
initial conditions is straightforward. We implement the relativistic, fNL

and gNL contributions as initial conditions for the L-PICOLA code, and
compute the power spectrum and bispectrum of the evolved matter field.
We focus specifically on the case of largest values of non-Gaussianity al-
lowed at 1− σ by Planck observations (fNL = −4.2 and gNL = −7000).
As a checkup, we show consistency with the one-loop perturbative pre-
scription and with a fully relativistic simulation (GRAMSES) on the
adequate scales. Our results confirm that both relativistic and PNG
features are most prominent at very large scales and for squeezed trian-
gulations. We discuss future prospects to probe these two contributions
in the bispectrum of the matter density distribution.

The expected result was obtained where the greatest difference was
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found in the bispectrum, since the 3-point correlation function mostly
detects deviations from the Gaussian distribution. This difference was
greater at the maximum scale that could be reached, which was at
k = 10−2h/Mpc. For the case where PNG is included with previously
mentioned parameters of fNL and gNL, it was 4% in the difference power
spectrum with respect to the Gaussian simulations and 10% in the bis-
pectrum with a squeezed triagulation. In the case of PNG and relativistic
contributions, the difference was 6% in the power spectrum and 15% in
the bispectrum. In the reduced bispectrum, it was denoted that a local
triangulation (squeezed type) there is a greater difference with respect
to the Gaussian simulation. There was also agreement with simulations
where the initial conditions are Newtonian and the gravitational evolu-
tion is relativistic. These results have been published [2].

State of art

In cosmology there are several models that are being accepted or dis-
carded given the observational precision. With current surveys such as
DESI [3], [4] and Euclid [5], there is a particular interest in analyzing
the Primordial Non-Gaussianity, which is the information on the primor-
dial distribution of matter that contains information on the Universe in
the inflation process. These Gaussinity deviations have a slight impact
on the distribution of matter today, which is why more precise observa-
tions are necessary, such as the previously mentioned surveys. Another
phenomenon of interest at present is the inclusion of relativity, which
its variation with respect to the Newtonian equations in certain cases
usually has an undetectable impact for now (however existing).

The most effective way to test the different models that try to ex-
plain the observations is through numerical simulations. To date, there
are high-resolution simulations with codes such as Gadget [6] that allow
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us to simulate the gravitational evolution of the distribution of matter
density. These codes have an adaptive mesh, in order to solve the corre-
sponding Newtonian gravitational equations taking clusters of particles
as a single mass that are far away and solving these equations particle by
particle in nearby areas. However, these codes tend to be highly compu-
tationally expensive. An alternative is the current fixed-grid codes such
as L-PICOLA [7], [8] which lose a bit of resolution at small scales with
considerably less computational cost, however they have shown good
agreement with large-scale adaptive mesh codes. If studies are being
carried out where the impact phenomenon is found on large-scales, these
codes are usually the most appropriate. There are codes that implement
the inclusion of PNG in the initial conditions e.g. [9], [10] through the
parameter FNL which corresponds to a parameter in the perturbative
expansion of the curvature of space. However, studies are needed that
include higher perturbative orders that improve the accuracy of the sim-
ulations. Similarly, although there are codes whose gravional evolution is
relativistic [11], [12], but more studies are needed to implement relativis-
tic aspects in the initial conditions. This information is usually analyzed
with high-order correlation functions such as the bispectrum and the
trispectrum. In surveys such as DESI, projects such as the Mock Chal-
lenge have emerged to analyze the different existing codes to select those
that are going to be used formally for the statistical study of the survey
observations.

Thesis outline

Chapter Two presents, first of all, the necessity of an initial scenario
where the Universe had to have an era of exponential expansion. The
theoretical background to physics of the Inflation is explained, in order
to understand the origin of overdensities (primordial perturbations) and
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why the detection of Primordial non-gaussianty is not an easy measure-
ment to detect. Also described is the structure formation from these
overdensities as the Baryonic Acoustic Oscillation. Through the use of
certain astrostatistics tools, such as the two and three point correlation
function, we will explain this relationship through Fourier’s transform
with the matter power spectrum and bispectrum, and how this will give
us information about the PNG created by the potential generated in
the primordial density perturbation. Also is all the background of the
perturbation theory, the importance and utility it has. We describe the
Standard Perturbation Theory in the linear regime and with the one-loop
correction and we also describe the Zel’dovich approximation. Then we
proceed to describe by means of a change of coordinates from Eulerian
to Lagrangian through the desplacement field to obtain the Lagrangian
Perturbation Theory and how to obtain the correction of one-loop for
the Power spectrum through two different ways of expanding the cumu-
lant involved. Then we will apply a chosen resummation to obtain the
one-loop correction to the bispectrum. In Chapter Three is the imple-
mentation of the said previously into codes such as L-PICOLA, which
is the main part of this Thesis we compute the power spectrum and
bispectrum to measure the differences between PNG and PNG initial
conditions into N-body simulations. And Finally the conclusions and
possible work that can be done in the line of this Thesis. We find dif-
ferences of 10% int he power spectrum and 16% in the bispectrum at
large-scales by implementing PNG and relativistic contributions to the
initial conditions. For the future work, there is a possible study of the
power spectrum and bispectrum of the voids. This is of interest because
voids are low matter density zones where the non-linearities due evolu-
tion are minimal, so the primordial state of the universe is less affected.
Also the formation of halos may be affected due the PNG so is also work
that can be done further this project.
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Chapter Two

Preliminaries

2.1 Cosmology with General Relativity

In order to have a more profound comprehension of cosmology, what is
first needed is to understand the concepts of General Relativity (GR).
Also, most of the information is obtained through observations of the
electromagnetic spectra, for example, to compute distances we have to
consider not just the continuous expansion of space, but also the rela-
tivistic effects of the light.

The infinitesimal distance between points in GR is defined by the
metric tensor gµν

ds2 = −gµνdxµdxν . (2.1)

We use the convention that the coordinate x0 denotes time and the metric
signature is {−,+,+,+}.

We will use the cosmological principle that states that viewed on a
sufficiently large scale, the properties of the Universe are the same for all
observers. The physical conditions of homogeneity and isotropy restrict
the space-time to the possibilities of the Friedmann-Lemaitre-Robertson-
Walker metric (FLRW metric).
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2.1.1 FLRW metric

The FLRW metric in spherical coordinates is

ds2 = dt− a2(t)
[

dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (2.2)

where k describes the 3D space curvature which can be positive (k
> 0), negative (k < 0) or flat (k = 0). The curvature factor has units of
length-2. The term a(t) is the scale factor and describes the expansion
or contraction of the Universe. We will use the convention as value of
the scale factor for today a(t0) = 1. The behavior of the scale factor can
be expressed by the expansion rate of the Universe called the Hubble
parameter:

H(t) =
ȧ

a
. (2.3)

From the FLRW metric, the Ricci tensor and scalar can be defined to
be introduced in the Einstein equations, which in turn will define the
evolution of the scale factor through this Hubble parameter.

2.2 Distances in cosmology

The redshift has been a useful way to measure how far an object is. The
redshift is defined as the fractional difference of the emitted wavelenght
λ1 over the observed wave λ0 as:

z ≡ λ0 − λ1
λ1

, (2.4)

2.2.1 Comoving distance

The light we observe from the objects in the sky, travels along the ξ
coodinate which satisfies the geodesic equation. If the light of an object
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is emitted at time t = t1 with a comoving distance ξ = ξ1, arrives the
observer at t = t0, is a flat space space is considered, we obtain:

dc ≡ ξ1 =

∫ ξ1

0

dξ = −
∫ t1

t0

c

a(t)
dt , (2.5)

using the redshift definition (2.4):

dc =
c

a0H0

∫ z

0

dz̃

E(z̃)
, (2.6)

where
E(z) ≡ H(z)

H0
(2.7)

2.3 Contents of the Universe and ΛCDM
model

The Einstein field equations relate the metric with the energy content of
the Universe in the energy-momentum tensor Tµν as follows:

Rµν −
1

2
gµνR = −8πGTmuν − Λgµν , (2.8)

where the Ricci tensor Rµν and the Ricci scalar R are related with
the deformation of space-time and G is the gravitational constant. The
term Λ was introduced by Einstein in order to have a static Universe,
but today it is used to explain the expansion [13].

We can treat the Universe as a perfect fluid considering the cosmolog-
ical principle and assumptions such as: that the distribution of matter
can be considered collisionless and that there is no viscosity. So the
energy-momentum tensor in the proper frame would be

Tµν =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 (2.9)
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where ρ is the mass density and p the pressure.
With the FLRW metric and the energy-momentum tensor inserted in

the Einstein field equations, these can now be derived into the Friedman
equations (

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
, (2.10)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (2.11)

where (2.10) describes the expansion rate from the components and cur-
vature of the Universe and (2.11) describes the acceleration as function of
the pressure and density. From these two equations, or from the energy-
momentum conservation equations, one may derive the following energy
density conservation equation :

ρ̇ = −3H(p+ ρ). (2.12)

The pressure p and the density ρ are related via the equation of state

p = wρ , (2.13)

where the parameter w changes accordingly to describe the different
ingredients of the Universe; for non-relativistic matter w = 0 and for
relativistic particles (as neutrinos or photons) w = 1/3. The acceler-
ated expansion of the Universe can be achieved via equation ((2.11))
through a fluid with a negative equation of state w < −1/3 of a positive
cosmological constant.

If we assume that all the components do not interact with each other,
then the total density and pressure can be written as:

ρ(a) = ρm(a) + ρr(a) + ρΛ , p(a) =
ρr(a)

3
− ρΛ . (2.14)

The parameter left to be determined is the curvature, which tells us
if the Universe is flat, closed or open. First, we have to define the critical
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density which is the total energy density in a flat Universe:

ρcrit(a) =
3H2(a)

8πG
. (2.15)

We can normalize the density of each ingredient with ρcrit to obtain
the density parameters

Ωm(a) =
ρm

ρcrit(a)
,Ωr(a) =

ρr
ρcrit(a)

,ΩΛ(a) =
ρΛ
ρcrit

, (2.16)

so the total density would be:

Ωtot(a) = Ωm(a) + Ωr(a) + ΩΛ = 1 +
k

(aH)2
, (2.17)

where the RHS is obtained from the equations (2.10). If the total density
is higher than ρcrit then k > 0, this indicates that the Universe is closed.
If Ωtot > ρcrit then k < 0, this indicates that the Universe is open and,
if Ωtot = ρcrit then k = 0, this indicates that the Universe is flat.

In terms of the density parameters, equation (2.11) can be written as

H2(a) = H0

[
Ωr

a4
+

Ωm

a3
+

1 + Ωtot

a2
+ ΩΛ

]
, (2.18)

where we can notice how all the components contribute to the expansion
of the Universe. We can numerically solve equation (2.18) to have the
age of different universes with different components.

Thus we can use observations to compare and have information of
our Universe and understand its behavior. For example, it would be
possible to know if the Universe will expand forever, if it will reach an
equilibrium point between matter and expansion, or if it will have a Big
Bounce.

2.3.1 Cosmological observations

Ever since humankind started analyzing the sky, different observations,
each more sophisticated than the previous, have been registered. For
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Figure 2.1 a(t) versus t for different values of the components
of equation (2.18).

example, in 1929, Edwin Hubble [14] measured the radial velocities of
extragalactic nebulae and concluded that the Universe was expanding.
This allowed for the establishment of Hubble’s law, v = H0D.

Observations also lead us to understand the different phenomena that
have happened in the history of our Universe, like the almost accidental,
discovery of cosmic microwave background radiation (CMB) by Penzias
& Wilson [15])

Actually the percentage of the components of the Universe hs been
very well inferred through the best concordance model with CMB, BAO
and SN1A observations (see following sections).In Figure 2.2 we can see
the confidence interval for different observations at 68%, 95%, and 99.7%
constraints on ΩΛ and Ωm, and the three methods of observations agree
with a very nearly flat Universe (k ∼0), a content of matter Ωm ∼ 0.3

and a content of cosmological constant ΩΛ ∼ 0.7 [16].
We are currently in the era of precision cosmology where observations
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Figure 2.2 Concordance of CMB, BAO, and SNIa observations.
The respective error ellipsoids are shown on the Ωm − ΩΛ plane.
[16].

now have a statistical minimal error that has never been seen before. This
will allow us to compare different cosmological models and know which
one better describes our Universe.

Today one of the most important surveys is the Dark Energy Spectro-
scopic Instrument (DESI), which will produce the best measurement of
the Baryonic Acoustic Oscillations (BAO) by a spectroscopic survey over
14,000 sq. degrees. DESI will observe 4 million luminous red galaxies
(LRGs), 18 million emission line galaxies (ELGs) and 2.4 million quasars
(QSOs) [3].
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2.3.2 Big Bang & Thermal history

Different models have tried to explain the origin and evolution of the
Universe, but the one that has given more correct answers is the Big
Bang model proposed by Georges Lemaître [17], which explains the ob-
servations of:
1. Redshift of galaxies. Distant galaxies have shown a shift to lower
frequencies in the electromagnetic spectrum. This can be detected by
the Lyman-alpha forest [18].
2. Microwave radiation. Our whole Universe was in a very hot, dense
state and as it expanded, the heat left a small radiation footprint that
can be detected in any direction of the sky [15].
3. Mixture of elements. Some of the elements we detect today were
created in the early Universe. The Big Bang predicts in a very precise
way how many of these have been made. [19].
4. Looking back in time. Before the Big Bang theory, there was the
Steady State theory which established that the Universe is basically the
same at any time as well as in any place [20], and this does not explain
the different types of stars that we can observe as far as we see.

We can describe the Thermal history of the Universe as follows:

The early Universe The early Universe has been full of specula-
tive theories because of the lack of information that we have from this
epoch; as well as because our laws of physics can not describe what hap-
pened with all the matter contained in a very confined space with huge
amounts of pressure and temperature. Alan Guth proposed the infla-
tionary model [21] which happened between 10-35 and 10-32 caused by
a scalar field that dominated the energy density of the Universe. An
observational problem of this is that we can not see anything before re-
combination. The possibility of detecting something further to the CMB
with gravitational waves exists but the sensitivity of our instruments is
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not high enough. At the end of inflation, the Universe returned to the
pre-inflationary temperature, which is called reheating.

Radiation domination Given that neutrinos only interact via weak
force, these were the first to decouple from the initial plasma. This left a
footprint before the CMB, but these particles are too difficult to detect.
We can solve equation (2.10) for each component to analyze how the
growth factor which is:

a(t) ∼ t1/2 , (2.19)

where we can conclude that the expansion no longer has an exponential
behavior. The initial density fluctuations started to grow because of
the gravitational interactions but baryons and radiation still coupled
to each other because of the high pressure and temperature. Figure
2.3 shows solutions for different components of the Universe considering
them independent of each other.

Big Bang Nucleosynthesis (BBN)

The Universe kept cooling down until, when it reached few MeV, pro-
tons and neutrons could form the first elements. This is limited to He-
lium because of the slightly existent bonds between them. BBN predicts
the primordial abundances of light elements very accurately. In Figure
2.4 we can see the observations (red line) of the Wilkinson Microwave
Anisotropy Probe (WMAP) and the predictions of light elements; and
as can be seen, a good concordance can be appreciated between them.

Matter domination

We can find a solution for equations (2.11) considering an Einstein-
deSitter universe where Ωtot = Ωm = 1, this means without cosmological
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Figure 2.3 Solutions for the scale factor for different components
[22].

constant, and the solution is

a(t) ∼ t2/3 . (2.20)

In Figure 2.3 we can appreciate that this happened around z ∼ 4800 and
finished in z ∼ 0.6 where the cosmological constant Λ started to domi-
nate. In this era the universe had a slower expansion rate, and it is here
that all the large-scale structures happened. As the astronomical obser-
vations became more precise, the amount of visible matter was measured,
but the cosmological and astrophysical models could not reproduce the
data observed. Fritz Zwicky studied the galaxy clusters [24] by analyzing
the Coma Cluster through the virial problem and obtained evidence of
unseen mass needed to maintain the galaxy cluster together. Another
need of considering more matter than just the visible one is the galaxy
rotation curves. The luminous mass density of a spiral galaxy decreases
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Figure 2.4 WMAP observations and BBN predictions [23].

from the center to the outskirts so, based on Kepler’s second law, one
would expect that the rotation velocities of stars would be decreasing.
However, this is not the case. As we can see in Figure 2.5, the predicted
curve of the luminous matter can not reproduce the observations from
the NGC 6503 galaxy rotation curve, instead, considering dark matter
in and halo around, the observations are clearly well reproduced.

Recombination and CMB Baryons started to fall into the gravi-
tational potentials of dark matter but, due to the remaining coupling of
photons, their pressure prevented a collapse of matter. This bouncing is
the so-called Baryonic Acoustic Oscillations (BAO) that is imprinted on
the CMB and can also be measured in galaxy clustering. The Universe
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Figure 2.5 Rotation curves predicted and observed [25].

was still cooling down and when it reached ∼4000 K, electrons and pho-
tons finally decoupled and electrons combined with protons to neutral
H and photons left a footprint which is the CMB. The dark ages of the
Universe correspond to when there were no light producing objects such
as stars. The overdensities continued to attract more matter until neu-
tral H became so dense that it began a fusion process which generated
the first stars and galaxies.

Re-ionization and galaxy formation Now that the Universe is
transparent to photons, the radiation of the stars can re-ionize the sur-
rounding neutral medium. The dwarf galaxies play an important role in
this epoch because even though their luminosity is low, they are very nu-
merous and were the primary source of ionizing photons. Re-ionization
was still not very constrained but estimations suggest between z = 12
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and z = 6 [26].

Cosmological constant domination era The last component of
the Universe to dominate the expansion rate is the cosmological constant,
solving equation (2.11) for Λ results

a(t) ∼ eH t . (2.21)

This is called the late-time accelerated expansion and started at z ∼ 6,
about 5.6 Gyrs ago. The Universe changed from decelerating into accel-
erating its expansion. The history of expansion has been observed with
different objects such as standard candles. As stated before, luminosity
is the biggest piece of information we have from astronomical objects, so
measuring the distance is not trivial. If we know the physical process of
the formation of an object, we van determine their theoretical luminos-
ity and knowing the distance from the absolute magnitude and apparent
magnitude through the relation

5 · log10D = m−M − 10 (2.22)

A usual standard candle is the type Ia Supernova (SN Ia); the process of
formation of them SN has been very well studied. In a binary system, in
which one of the is a white dwarf, eventually, because of its high density,
the stellar matter of the companion star starts to be accreted into the
white dwarf until it reaches the Chandrasekhar mass and generates the
SN Ia. The observations of SN Ia are shown in Figure 2.6. The solid
red line is ΛCDM model with Ωm=0.3, ΩΛ=0.7 and Ωk=0 and the solid
blue line is the cosmological model with Ωm=1, ΩΛ=0 and Ωk=0 and
it can be appreciated that the fiducial model ΛCDM is very consistent
with the observations.
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Figure 2.6 Distance modulus of SN Ia, fiducial ΛCDM model
(red line) and Ωm=0.3, ΩΛ=0.7 and Ωk=0 model [27].

2.4 Inflation

If we consider a completely homogeneous and isotropic matter distribu-
tion in the Universe at all scales, this would simply keep the Universe in
an equilibrium state forever. In order to have structures such as stars,
galaxies, clusters, etc., the primordial Universe may have had some sort
of perturbations. The earliest picture we have with high detail of the
Universe, is the CMB which shows temperature differences of the order
of 10-5 of amplitude. These tiny perturbations correspond to density
perturbations where initial overdense regions accrete more matter. The
theory of inflation (section 2.4) is used to predict the origin and forma-
tion of these primordial overdensities and give answers to the Flatness
problem and the Horizon problem of standard Big Bang cosmology. The
recent discovery of the Higgs Boson provided a connection between the
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early Universe and the actual standard model of particle physics because
most models of inflation depend on one or more scalar fields which were,
up to the experimental confirmation of the Higgs existence [28]. Another
important component for the origin of the structure of the Universe is
the Primordial non-gaussianity (PNG) which can be proof of the infla-
tionary process. The detection of PNG is currently a big observational
but, maybe in the near future, with observations of Large-scale struc-
tures (LSS) we might have the precision required to detect PNG more
precisely and have a better description of the primordial Universe.

The physics of inflation give us the parameter we will need to es-
tablish our initial conditions for structure formation. The Inflationary
model proposed by Alan Guth [21] provided a solution to more than one
problem of the standard big bang theory.

The Flatness Problem: From equation (2.17) we can describe the
curvature k as a function of time as

1− Ωtot(a) = −
k

(aH)2
, (2.23)

where the term aH is the comoving Hubble radius thus,

1− Ω(t) =
H2

0(1− Ω0)

H2(t)a2(t)
. (2.24)

For when the Universe was dominated by matter and radiation only

H2

H2
0

=
Ωr,0

a4
+

Ωm,0

a3
, (2.25)

then equation (2.24) becomes,

1− Ω(t) =
(1− Ω0)a

2

Ωr,0 + Ωm,0a
. (2.26)

At the matter domination era where a ∼ t2/3,

1− Ω(t) =
1− Ω0

Ωm,0

(
t

t0

)2/3

. (2.27)
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Comparing equation (2.26) and (2.27), we appreciate that the curvature
we observe today, which is very close to zero, with Ω0 very close to
1, means that in the beginning the Universe has even flatter, with the
curvature even closer to zero. Another important fact is that the sign
of the curvature remains constant, so if the Universe was open in the
beginning, it can not become a closed one and vice-versa. This initial
flatness of our Universe finds no explanation in a Big Bang Universe
dominated by radiation at early times. Primordial inflation provides an
answer as we can see below.

The Horizon problem If we consider a beam of light emitted at
coordinate re and time te, recived by an observer at ro and time to in the
FLRW metric, then the relation of time and distance is given by:∫ to

te

c dt

a(t)
=

∫ re

ro

dr√
1− kr2

. (2.28)

If the emitted light frequency is νe, then the period is ∆te = 1/νe, then
the second crest of the wave is:∫ to+∆to

te+∆te

c dt

a(t)
=

∫ re

ro

dr√
1− kr2

, (2.29)

considering that the difference of ∆to and ∆te is small enough to establish
that a(t+∆t) ∼ a(t), then:

∆to
∆te

=
a(te)

a(to)
=
λo
λe

. (2.30)

We define as redshift parameter, the change in the emitted light as:

z ≡ λo − λe
λe

=
λo
λe
− 1. (2.31)

The light speed sets how far the an emitted signal can be reached by
an observer located at r = 0. The Big Bang model establishes that
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R(t) = 0, so R(t)
∫ t

0
cdt′

R(t′) is the maximum distance that a light beam
emitted at t=0 can reach. We call the proper distances of the horizon:

dH(t) = R(t)

∫ t

0

cdt′

R(t′)
= (t)

∫ rH

0

dr√
1− kr2

, (2.32)

if we consider a universe with k = 0 at radiation dominated era as
R(t) ∝ t1/2 we obtain:

dH(t) = t1/2
∫ t

0

cdt′

t1/2
= 2ct . (2.33)

Considering a universe in the matter dominated era where R(t) ∝ t2/3:

dH(t) = t2/3
∫ t

0

cdt′

t2/3
= 3ct . (2.34)

For the cosmic background radiation, the physical distance from the
source at the time of emission, is:

dCBR(te) = R(te)

∫ to

te

cdt

R(t)
. (2.35)

But at the time of emission, the radiation was coming from opposite
directions, so the physical distance was approximately:

dsep = 2dCBR(te), (2.36)

and the size of the horizon at the time of emission was:

dH(te) = R(te)

∫ te

0

cdt

R(t)
. (2.37)

We can calculate the separation ratio to the horizon size to know which
regions were in causal contact. To do this, we can look to the ratio, if it
is greater than 1, the horizon of two regions were outside of each other
and if the ratio is greater than 2, there is no causal contact:

dsep(te)

dH(te)
=

2
∫ to
te

cdt
R(t)∫ te

0
cdt
R(t)

, (2.38)
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for a matter-dominated universe and k = 0:

dsep(te) = 2R(te)

∫ to

te

cdt

R(t)
=

6ctoR(te)

R(to)

(
1−

(
te
to

)1/3
)

(2.39)

dH(te) = R(te)

∫ te

0

cdt

R(t)
=

3ctoR(te)

R(to)

(
te
to

)1/3

(2.40)

dsep(te)

dH(te)
= 2

((
to
te

)1/3

− 1

)
, (2.41)

where in terms of the redshift:

1 + z =
R(to)

R(te)
=

(
to
te

)2/3

(2.42)

dsep(te)

dH(te)
= 2

(
(1 + z)1/2 − 1

)
. (2.43)

Considering that the microwave background radiation was emitted ad
z = 1500, the separation distance was 80 times the horizon distance at
the time of emission.

2.4.1 Accelerated expansion

The acceleration of the scale factor is defined as:

ä

a
= Ḣ +H2 = H2

(
1 +

Ḣ

H2

)
= H2(1− εH) , (2.44)

where εH is defined as the first of the slow roll parameters. In order to
guarantee the acceleration of the expansion, the equation has to satisfy:

ä

a
> 0 −→ 0 < εH < 1 . (2.45)

The number of e-folds is defines as:

dN = −Hdt , (2.46)
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this parameter refers to the power of e at which the universe expands
from the start of the Big Bang (or the end of inflation). Considering a
period of primordial inflation, this parameter is thus counted backwards
from the end of inflation N = 0 and before the end of inflation N = 60.

Slow-roll

Given an initial scalar field ϕ0 that hypothetically dominated the early
universe, the inflation evolution would be given by the equation:

ϕ̈0 + 3Hϕ̇0 + V ′(ϕ0) = 0 , (2.47)

where V is the potential. The slow-roll name is because it is required
that ϕ̇20 << V (ϕ0). The FLRW equation is then:

H2 ∼ 8πG

3
V (ϕ0) , (2.48)

where only the inflation is considered as energy contribution of the Uni-
verse. The equation of motion is then:

3Hϕ̇0 = −V ′(ϕ0) , (2.49)

now is related ϕ̇0 as function of the potential. So the slow-roll model has
the condition:

ϕ̇20 << V (ϕ0). (2.50)

2.4.2 Inflation fluctuations

During inflation, quantum fluctuation surged and then imprinted in the
curvature fluctuations which grew as matter started accumulating in such
a host for condensations. These quantum fluctuations were stretched out
of casual contact during inflation. A perturbation in a scalar field (in this
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case, the inflation field) ϕ, corresponds to a perturbation of the energy-
momentum tensor, δϕ −→ δTµν. Which leads to Einstein equations as:

δRµν −
1

2
δ(gµνR) = 8πGδTµν , (2.51)

where it is seen that this perturbations also generates perturbations in
the metric δgµν, Thus we can evaluate perturbations from the metric the
density fluctuations. For instance, perturbing the Klein-Gordon equation
we have:

δ

(
−∂µ∂µϕ+

∂V

∂ϕ

)
= 0 , (2.52)

where it is seen that the perturbations of inflation and the perturbations
of the metric δϕ −→ δgµν are coupled. For the scalar field with the
perturbation ϕ(x) = ϕ0(t) + δϕ(x), it satisfies the equation of motion:

δϕ̈+ 3Hδϕ̇−
∇2δϕ

a2
+ V ′′δϕ = 0 , (2.53)

For the limit k/a << H, the gradient term can be neglected and yielding
that ϕ̇0 and δϕ solve the same equation, thus both quantities are related
just by a constant of proportionality such as:

ϕ = −ϕ̇0δt(x) , (2.54)

which lead us to the form of ϕ(x, t) as:

ϕ(x, t) = ϕ0(x, t)− δ(t,x) . (2.55)

This tells us that the inflation field has fluctuations so the scalar field is
not homogeneous. These fluctuations have effects in the space curvature
that can also be parameterized by the number of e-folds such as:

−ζ = δN = δN(ϕ(x, t)) =⇒ ∂N

∂ϕ
δϕ =

∂N

∂t

δϕ

ϕ̈
= H

δϕ

ϕ̈
, (2.56)
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where the metric perturbation is expressed in terms of the linear curva-
ture perturbations where non-linear primordial contributions is given by
the expansion:

ζ =
∂N

∂ϕ
δϕ+

1

2

∂2N

∂ϕ2
δϕ . (2.57)

Details will be described on later sections.
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2.5 Perturbation theory

2.5.1 Newtonian treatment

In cosmology, two common choices of coordinates are: proper coordi-
nates and comoving coordinates. The proper radius r and the comoving
coordinate x where the relation between them is:

r = ax . (2.58)

The Nabla operators (∇ = ∂
∂x and ∇r =

∂
∂r) are related through

∇r =
1

a
∇ (2.59)

Let us focus on a universe with pressureless matter and no cosmologi-
cal constant, this is called Einstein de-Sitter Universe. The continuity
equation in proper time coordinates is established as:

∂

∂t
ρ+∇r(ρu) = 0 (2.60)

Expanding the second term we get:

∂

∂t
ρ+ u · ∇rρ+ ρ∇r · u = 0 (2.61)

We observe that the first two terms, form the convective derivative of ρ,
so the previous equation is:

d

dt
ρ+ ρ∇r · u = 0 (2.62)

In comoving coordinates we get:

1

a

d

dτ
ρ+

1

a
ρ∇ · u = 0 (2.63)

Using the conformal convective derivative and the absolute velocity u:

d

dt
ρ+ 3Hρ+∇ · (ρv) = 0. (2.64)

31



In the formalism of cosmological perturbations, the velocity is split in a
background expansion plus a peculiar velocity:

dr

dt
= ṙ =

da

dt
x+ a

dx

dt
= Hr + av(t, x), (2.65)

and the perturbed potential is:

ϕ = ϕ(0)(t, x) + δϕ(t, x). (2.66)

The Poisson equation establishes the relation between the gravita-
tional potential and the matter density. In proper coordinates, this
equation is:

∆rϕ = 4πGρ (2.67)

in comoving coordinates it is

∆ρ = 4πGa2ρ (2.68)

The Euler equations describe how the velocity field changes in time
given a gravitational potential, in proper coordinates this is:

∂

∂t
u+ u · ∇ru = −∇rϕ. (2.69)

In comoving coordinates, the Euler equation is:

du

dτ
= −δϕ (2.70)

Using the the total velocity and the convective derivative:

d

dt
Hx+

d

dt
v +Hv + v · ∇v = −δϕ (2.71)

For the background, the solution to the previous equation:

d

dt
H = −4

3
πGa2ρ(0) (2.72)
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The perturbated equation is on the other hand:

d

dt
v +Hv + v · ∇v = −∇δϕ (2.73)

so the perturbed Euler equation yields to scalar terms (the expansion
and the shear) and a vectorial vectorial (the vorticity):

d

dt
v +Hv +

1

2
∇v2 − v × ω = −∇δϕ (2.74)

where

v → θ = ∇v , σij∂v − δijθ = σΣi
j, (2.75)

ω is defined as the vorticity

ω ≡ ∇× v (2.76)

and the traceless tensor sigma is

Σi
j =

1 0 0

0 1 0

0 0 −2

 (2.77)

2.6 Standard Perturbation Theory

First of all we will analyze the standard perturbation theory where we
consider pressureless dust particles and non-relativistic behavior so that
relevant velocities are much smaller than the speed of light. For this for-
malism, the chosen coordinates are the ones where there is no comoving
fluid, which are the Eulerian coordinates. The continuity equation in
Eulerian coordinates is:

∂δ

∂τ
+∇ · [(1 + δ)v] = 0, (2.78)
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where v is the velocity and the dot the derivative with respect the con-
formal time τ . The Euler equation:

∂v

∂τ
+ (v · ∇)v = −Hv −∇ϕ , (2.79)

where ϕ is the gravitational potential field and the comoving Hubble
factor as H ≡ d ln a/dτ = aH. The Poisson equation:

∇2ϕ = 4πGa2ρ̄δ , (2.80)

Linear solutions for SPT

The linear solution can be used for when density and velocity perturba-
tions are small, so coupled Fourier modes can be neglected, linear form
of these equations are:

∂δ(1)(k, τ)

∂τ
+ θ(1)(k, τ) = 0, (2.81)

∂θ(1)(k, τ)

τ
+H(τ)θ(1)(k, τ) + 3

2
H2(τ)Ωm(τ)δ

(1)(k, τ). (2.82)

Where the superindex (1) is for the linear part of the expansion. We can
solve for δ1 substituting equation (2.81) into equation (2.82) to obtain:

∂2δ(1)(k, τ)

∂τ 2
+H(τ)∂δ

(1)(k, τ)

δτ
+

3

2
H2(τ)Ωm(τ)δ1(k, τ) = 0 , (2.83)

this is a second order differential equation with solution:

δ(k, τ) = D+δ
+
0 (k) +D−δ

−
0 (k) . (2.84)

Normalizing the time factors to unity at the present time, the growth
factors of both the growing (+) and decaying (-) modes, we find that the
expansion (2.84), imposes the following definitions where solutions are:

D+(τ) =
5

2
Ωm

H(a)

H0

∫ a

0

da′

[a′3H(a′)/H0]3
(2.85)
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D−(τ) =
H

H0
=

1

a

H
H0

. (2.86)

These functions have variations depending on the cosmology. With Eq.
(2.84) we can have a solution for the continuity equation (2.81) as:

θ(k, τ) = −H(τ)[f(τ)δ+0 + g(τ)δ−0 ] (2.87)

where the growth rates denoted by:

f(τ) =
1

H(τ)
d lnD+(τ)

dτ
=
d lnD+

d ln a
, g(τ) =

d lnD−
d ln a

(2.88)

If we consider an Einstein-de Sitter cosmology (i.e. flat K = 0,
only matter without cosmological constant Ωm = 1,ΩΛ = 0), that can
describe the Universe after matter-radiation equality, we can solve the
Friedmann equation, where the scale factor and the conformal expansion
rate are:

a(τ) =

(
H0

2
τ

)2

∝ τ 2 , (2.89)

H = H0a
−1/2 =

2

τ
. (2.90)

This yields the following solutions:

D+(τ) = a , D− = a−3/2 , f1(τ) = 1′ , g(τ) = −3
2

. (2.91)

The fact that the growing mode D+ is equal to the scale factor a, allows
us to compare the amplitude of the metric perturbations at recombi-
nation to the local density perturbations. For the case of the decaying
mode D−, disappears fast and becomes subdominant. This mode is usu-
ally neglected..

For ΛCDM cosmological model, that corresponds to a universe with
cosmological constant Λ, so Ωm ̸=,ΩΛ ̸= 0, the growth function and the
growth rate become:

D+ ≈
5

2

aΩm,0

Ω
4/7
m,0 − ΩΛ,0

+ (1 + Ωm,0/2)(1 + Ωm,0/70) , (2.92)
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f(τ) ≈ [1− (Ωm,0 + ΩΛ,0 − 1)a+ ΩΛ,0a
3]−4/7 (2.93)

Non-linear solution for SPT

For EdS, when decaying mode is neglected, the density contrast and
velocity in linear approximations are:

δ1(k, τ) = a(τ)δ0(k) , θ1(k, τ) = −H(τ)a(τ)δ0(k) . (2.94)

where superindex 1 represents linear approximation. The pertubative
expansion to higher orders is:

δ(k, τ) =
∞∑
n=1

an(τ)δn(k) , θ(k, τ) = −H
∞∑
n=1

(τ)an(τ)δn(k) . (2.95)

To obtain this solutions we have to expand the density and velocity k

functions as:

δn(k) =

∫
d3q1
(2π)3

. . .

∫
d3qn
(2π)3

[
δ1(q1, τ), ..., δ

1(qn, τ)

× Fn(q1, ..., τ)qnδD(k − q1 − ...− qn)
]

,

(2.96)

θn(k) =

∫
d3q1
(2π)3

. . .

∫
d3qn
(2π)3

[
δ1(q1, τ), ..., δ

1(qn, τ)

×Gn(q1, ..., τ)qnδD(k − q1 − ...− qn)
]

,

(2.97)
where Fn and Gn are kernels for the characterization of the wave modes.
These kernels are defined as:

Fn(q1, ..., qn) =
n−1∑
m=1

Gm(q1, ..., qm)

(2n+ 3)(n− 1)
[(2n+ 1)α(k1,k2)

× Fn−m(qm+1, ..., qn) + 2β(k1,k2)

× Gn−m(qm+1, ..., qn)] ,

(2.98)
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Gn(q1, ..., qn) =
n−1∑
m=1

Gm(q1, ..., qm)

(2n+ 3)(n− 1)
[3α(k1,k2))

× Fn−m(qm+1, ..., qn) + 2nβ(k1,k2)

× Gn−m(qm+1, ..., qn)] ,

(2.99)

where k1 ≡ q1 + ... + qm,k2 ≡ qm+1 + ... + qn and F1 = G1 ≡ 1. The
kernels α(k1,k2) and β(k1,k2) are given by

α(k1,k2) ≡
(k1 + k2) · k1

k21
, (2.100)

β(k1,k2) ≡
(k1 + k2)

2(k1 · k2)k1

2k21k
2
2

, (2.101)

where n is the order desired for the kernel, and k = |k|. For linear order
F1 = 1 and G1 = 1. For second order, the kernels are:

F2(k1,k2) =
5

7
+

2

7

(k1 · k2)
2

k21k
2
2

+
k1 · k2

2

(
1

k21
+

1

k22

)
, (2.102)

G2(k1,k2) =
3

7
+

4

7

(k1 · k2)
2

k21k
2
2

+
k1 · k2

2

(
1

k21
+

1

k22

)
, (2.103)

For third order:

F3(k1,k2,k3) =
2k2

54

[
k1 · k23

k21k
2
23

G2(k2,k3) + (2 cyclic)

]
+

7

54
k ·
[
k12

k212
G2(k1,k2) + (2 cyclic)

]
+

7

54
k ·
[
k1

k21
F2(k2,k3) + (2 cyclic)

] (2.104)

G3(k1,k2,k3) =
k2

9

[
k1 · k23

k21k
2
23

G2(k2,k3) + (2 cyclic)

]
+

1

18
k ·
[
k12

k212
G2(k1,k2) + (2 cyclic)

]
+

1

18
k ·
[
k1

k21
F2(k2,k3) + (2 cyclic)

] (2.105)
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For non-linear solutions other than EdS cosmologies, the treatment is
more complicated since solutions at higher orders are functions with
conformal time and the momentum k dependence is not separable, so it
can not be integrated in conventional ways. This implies that growing
modes at n-th order are not proportional to the scale factor. Also there
are not necessarily kernels with recursive behavior, but the dependence
of the cosmological ingredients Ωm and ΩΛ is so weak that we can use
a recursion relation similar to that of EdS in order to approximate the
ΛCDM cases.

Lagrangian dynamics

In a Lagrangian scheme we are describing the density and velocity vector
fields in a comoving displacement coordinate q. Where the displacement
field Ψ(q, t) is defined as:

x(q, t) = q +Ψ(q, t) . (2.106)

The equations of motion for a trajectory x(t) is then:

d2x

dt2
+H(t)dx

dt
= −∇xΦ . (2.107)

Taking the divergence of this equation we obtain:

∇x ·
[
d2x

dt2
+H(t)dx

dt

]
= −∇2

xΦ = −3
2
H2Ωmδ(x) , (2.108)

where the density contrast is defined as:

δ(x) ≡ ρ(x)

ρ̄
− 1 . (2.109)

Via the mass conservation, we have:

ρ̄d3q = ρ(x, τ)d3x = ρ̄(τ)[1 + δ(x, τ)]d3x . (2.110)
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We can relate the density contrast in the Eulerian scheme with the dis-
placement on the Lagrangian formalism as:

1 + δ(x, τ) =

∣∣∣∣d3qd3x
∣∣∣∣ = 1

J(q, τ)
, (2.111)

where the Jacobian is defined from Eq. (2.106) as J(q, τ) = Det(δij +

ψij(q, τ)) and transforms Lagrangian o Eulerian coordinates. And the
partial derivative of the displacement field as ψi,j ≡ ∂ψi/∂qj. If we use
the SPT to Lagrangian relationship (2.111) in the equation of motion
(2.108) we obtain:

J(q, (τ))∇x ·
[
d2x

dt2
+H(t)dx

dt

]
=

3

2
H2(τ)Ωm(τ)(J − 1) . (2.112)

Using the chain rule we obtain the equation for the displacement field:

J(q, τ)

[
d2Ψi,j(q, τ)

dτ 2
+H(τ)dΨi,j(q, τ)

dt

]
=

3

2

H2(τ)Ωm(τ)[J(q, τ)− 1]

δij +Ψi,j
.

(2.113)

Lagrangian Perturbation Theory (LPT)

We can solve the equation (2.113) with a perturbative treatment, so we
make the expression for the displacement field as:

Ψ(q, τ) = Ψ(1)(q, τ) + Ψ(1)(q, τ) + ... . (2.114)

Where we can determine the order of the solution depending on the
approximation we need.

Linear order LPT

To find the linear equation for the displacement field Ψ we need to ap-
proximate the Jacobian as:

J(q, τ) = Det [δij +Ψi,j(q, τ)] ≈ 1 + Ψi,i(q, τ) , (2.115)
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also the inverse of the Jacobian matrix:

[δij +Ψi,j]
−1 ≈ δij −Ψi,j . (2.116)

With this approximations, the equation (2.113) of the displacement field
Ψ in the linear approximation of the Jacobian becomes:

(1 + Ψk,k)[δij −Ψi,j]

(
d2Ψi,j

dτ 2
+H(τ)dΨi,j

dτ

)
=

3

2
H2(τ)ωm(τ)Ψk,k ,

(2.117)
where the equation at linear order for Ψ(1) is reduced to:

d2Ψ
(1)
i,i

dτ 2
+H(τ)

dΨ
(1)
i,i

dτ
=

3

2
H2(τ)ωm(τ)Ψi,i . (2.118)

Given the relation to the matter density contrast in Eq. (2.111) and the
governing equation for δ in Eq. (2.83) we can conclude that:

∇q ·Ψ(1) = −δ1(x, τ) , (2.119)

and just as before, the equation for the growth function is:

D
′′

1(τ) +H(τ)D′′1(τ) =
3

2
H2(τ)Ωm(τ)D1(τ) (2.120)

In terms of Eulerian coordinates, the position of the particle is thus:

x = q −∇−1q δq(xτ) (2.121)

and the peculiar velocity is just the time derivative. In Lagrangian co-
ordinates, where the position q is fixed,

v ≡ dx

dτ
= −Hf1∇−1q δq(x, τ) , (2.122)

here f1 is the logarithmic derivative of the linear growth factor defined
as:

f1 ≡
d lnD1

d ln a
. (2.123)
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The curl-free condition of the Lagrangian displacement, implies the ex-
istence of a scalar potential. At linear order:

Ψ(1)(q, τ) = −∇qϕ
(1)(q, τ) , (2.124)

where ϕ is the linear Lagrangian potential related to the density field:

∇q ·Ψ(1)(q, τ) = −∇2
qϕ

(1)(q, τ) = −δ(x, τ) . (2.125)

so the solutions for the position and peculiar velocity in terms of the
Lagrangian potential ϕ are:

x(q, τ) = q −∇qϕ
(1)(q, τ) (2.126)

v(q, τ) = −Hqϕ
(1)(q, τ) . (2.127)

Zel’dovich approximation

When matter behavior starts to deviate from linear approximation such
to when the perturbations grow similar as the background density, the in-
teractions are stronger. If we assume non-rotational perturbation, using
a linear potential, we have a diagonalized Jacobian Matrix such as:

J(q, τ) =

∣∣∣∣∣∣∣
1− λ1D1(τ) 0 0

0 1− λ2D1(τ) 0

0 0 1− λ3D1(τ)

∣∣∣∣∣∣∣ (2.128)

where λi are the eigenvalues, here conveniently sorted as λ1 ≥ λ2 ≥ λ3.
Without loss of generality, this describes the geometry of the fluid as
indicator of collapse or expansion. If λi > 0 the fluid is contracting, if
λi < 0, it is expanding in the same direction. We describe the density
contrast as:

1 + δ(x, τ) =
1

[1− λ1D1(τ)][1− λ2D1(τ)][1− λ3D1(τ)]
. (2.129)
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The Zel’dovich approximation is typically used to set the initial con-
ditions of cosmological simulations where non-linearity from evolution is
not relevant yet.

Second order LPT (2LPT)

Using the expansion of the density field of (2.114), at second order, we
obtain the Jacobian until the second order:

J ≈ 1 + Ψ
(2)
k,k +

1

2

[(
Ψ

(1)
k,k

)
−Ψ

(1)
j,iΨ

(1)
j,i

]
. (2.130)

The equation of motion given the Jacobian at second order is:(
d2Ψ

(2)
i,i

dτ 2
+H

dΨ
(2)
i,i

dτ

)
+Ψ

(1)
k,k

(
d2Ψ

(1)
i,i

dτ 2
+H

dΨ
(1)
i,i

dτ

)
−Ψ

(1)
k,k

(
d2Ψ

(1)
i,i

dτ 2
+H

dΨ
(1)
i,j

dτ

)

=
3

2
H2Ωm

[
Ψ

(2)
k,k +

1

2

(
Ψ

(2)
k,k −

1

2
Ψ

(1)
i,jΨ

(1)
j,i

)2
]

.

(2.131)

The solution for the linear displacement (2.118) is used to obtain the
equation of motion as:(
d2Ψ

(2)
i,i

dτ 2
+H

dΨ
(2)
i,i

dτ
− 3

2
H2ΩmΨ

(2)
i,i

)
=

3

2
H2Ωm

[
1

2

(
Ψ

(2)
k,k −

1

2
Ψ

(1)
i,jΨ

(1)
j,i

)2
]

.

(2.132)
Consequently, the growth function at second order is:

D′′2(τ) +HD′2(τ)−
3

2
H2ΩmD2(τ) = −

3

2
H2Ωm[D1(τ)]

2 . (2.133)

Similar to the linear approximation, we can introduce a second order
scalar potential as:

Ψ(2)(q, τ) = ∇qϕ
(2)(q, τ) (2.134)
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The position and velocity at second order are described by:

x(q, τ) = q −∇qϕ
(1)(q, τ) +∇qϕ

(2)(q, τ) (2.135)

v(q, τ) =
dx

dτ
= Hf1∇qϕ

(1)(q, τ) +Hf1∇qϕ
(2)(q, τ) (2.136)

2.7 Relativistic perturbations

3+1 formalism

In GR, four-dimensional spacetime can be sliced into hypersurfaces with
3 space coordinates and 1 time coordinate. Two of the useful approaches
are the 1+3 formalisms. The differences are subtle but important for ma-
nipulation and interpretation of the equations. In general, in 3+1 formal-
ism space-time is foiled through a given family of hypersurfaces. In the
1+3 formalism the spacetime is threaded using a family of time-integrals
that can connect the points representing positions in different hypersur-
faces. In cosmology, it is usual to pick a preferred direction of motion
of the objects in the Universe: the preferential 4-velocity (comoving ob-
servers) that is congruent with the geodesics that thread space-time.

With the established coordinate split it is convenient to define local
comoving coordinates xµ = (t, yi) choosing a surface S that intersects
each world line only once at points labelled as yi, i = 1, 2, 3. The prefer-
ential motion along the flux lines allow us to define the comoving coor-
dinates and implies the existence of a preferential 4-velocity defined by
the local coordinates xµ = xµ(τ) where τ is the proper time along the
world lines. So the 4 velocity is defined as:

uµ =
dxµ

dτ
, with uµuµ = −1 . (2.137)

The normalization thus defines the comoving coordinates as those with
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a fixed position, and a normalized proper time s such that:

uµ = δµ0 −→
ds

dτ
= 1 ,

dyi

dτ
= 0 , (2.138)

where s is the normalized proper time.
We can define a projector tensor (hab) which defines the components

orthogonal to ua for general tensors in spacetime of the spatial orthogonal
hypersurfaces to aa. This tensor acts as spatial metric to this hypersur-
faces

hab = gab + uaub . (2.139)

This tensor satisfies the relations habh
b
ch

c
a = 3 and habu

b = 0. In this way,
any vector Va and tensors Sab, we can obtain the Projected Symmetric
Tracefree part (PSTF) by:

V<a> = hbaVb , S<ab> =

{
hc(ah

d
b) −

1

3
habh

cd

}
Scd . (2.140)

With the 4-velocity and the projection tensor we can define the time
derivative through the flux lines and the projected derivative to the
orthogonal hypersurfaces. The time derivative for an arbitrary tensor
Sa1...ak
ba...bl

is:
Ṡa1...ak
ba...bl

= uc∇cS
a1...ak
ba...bl

, (2.141)

and thus we can define the acceleration vector as

u̇a = ub∇bu
a −→ u̇aua = 0 . (2.142)

The projected derivative (which is the covariant derivative to the orthog-
onal hypersurfaces to ua) is defined by:

∇̄cS
a1...ak
b1...bl

= hfch
a1
d1...h

ak
dk
hbkek...h

bl
el
∇fS

d1...dk
e1...el

, (2.143)

with this definition we can split the covariant derivative of ua as:

∇bua = ∇̄bua − u̇aub . (2.144)
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For a spatial surface S where t = const., we can define a relative position
vector to the comoving coordinates xµ(t, yi) as follows:

βµ =

(
∂xµ

∂yi

)
t=cnt.

δyi , (2.145)

this vector is not orthogonal no the flux lines, so is projected to have a
relative position vector to ua

β<a> = eaδl , eaua = 0 & β<a>β<a> = δl2 , (2.146)

where ea is an orthogonal unitary vector to ua and the relative distance
δl. The time derivative of this vector yields the relative velocity between
point in that hypersurface

va = v<a> = habu
d∇d(h

b
cβ

c) = β̇<a> . (2.147)

This vector satisfies the fact that the Lie derivative along ua is null
£uv

a = 0, so the relative velocity between particles, is given by the linear
transformation from the relative position va = V b

a β
<b> where V b

a = ∇̄bua

and

Vab = ∇̄bua = V(ab) + V[ab] = Θab + ωab = σab +
1

3
Θhab + ωab , (2.148)

where Θab is the expansion tensor, ωab is the vorticity tensor, σab the
shear tensor and Θ the scalar related to the expansion. With these
quantities it is possible to define a generalized Hubble relation as:

δ̇l

δl
= Θabe

aeb =
1

3
Θ + σabe

aeb , (2.149)

The Hubble scalar can be defined as the proportional to the volume
expansion Θ as:

H =
l̇

l
=

1

3
Θ . (2.150)
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The covariant derivative in terms of the kinematic variables is the sum
of the projected derivative (2.148) plus the derivative along the velocity
vector ua, thus:

∇bua = ωab + σab +
1

3
Θhab − u̇aub . (2.151)

These quantities are observables which are in principle realized in galaxy
surveys.

2.8 Perturbative Initial Conditions

2.8.1 Evolution equations

In the last section we defined the relativistic covariant quantities that
describe the evolution of elements in a general spacetime, within the
1+3 formalism. We shall follow such definitions to derive non-linear
quantities in cosmological perturbation theory, which will thus constitute
the synchronous-comoving gauge. Often is chosen for evolution equations
for the density contrast to represent a suitable Lagrangian frame in GR
and to define a local Lagrangian galaxy bias up to second order [29].
Taking only scalar degrees of freedom on account of the line element is

ds2 = a2(η)[−(1 + 2ϕ)dη2 + 2ω,idηdx
i + γijdx

idxj] , (2.152)

where a is the scale factor, η is the conformal time. ϕ and ω are scalar
metric perturbations and γij is the spatial metric, with latin indices ac-
counting for the three spatial coordinates. Working in the synchronous-
comoving gauge, we set ϕ = ω,i = 0. This is useful to evolve, as a
matter content, a pressureless fluid as described by comoving observers.
This defines the four-velocity as uµ = (−a, 0, 0, 0) (with greek indices
running from 0 to 3 and representing spacetime coordinates). With the
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above elements at hand, we define the deformation tensor is [30],

ϑµν ≡ auµ;ν −Hδµν . (2.153)

This tensor presents only non-trivial spatial components proportional to
the extrinsic curvature K i

j of the conformal spatial metric γij

ϑij = −K i
j , (2.154)

where the extrinsic curvature is given by

K i
j ≡ −

1

2
γikγ′kj , (2.155)

(where a prime stands for ′ ≡ ∂/∂η).
The above is the basis for the covariant fluid approach to perturbation

theory [31], [32]. The density field ρ can be split in a density background
ρ̄(η) and a fluctuation δρ(x, η) is

ρ(x, η) = ρ̄(η) + δρ(x, η) = ρ̄(η)(1 + δ(x, η)) . (2.156)

The continuity equation for the evolution of the density contrast δ(x, η)
is

δ′ + (1 + δ)ϑ = 0 , (2.157)

where ϑ = ϑ α
α is the trace of ϑ µ

ν . The evolution of ϑ is described by the
Raychaudhuri equation which is

ϑ′ +Hϑ+ ϑijϑ
j
i + 4πGa2ρ̄δ = 0 . (2.158)

The Raychaudhuri equation is analog to Euler’s equation, but in this case
in the GR regime which describes the motion of particles [30]. Equations
(2.157) and (2.158) describe the evolution of a dust component in a cos-
mological de-Sitter or ΛCDM background. Note that these two equations
find a non-linear equivalence with the Newtonian continuity and Euler
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equations in the Lagrangian frame, when the following equivalences are
drawn (see e.g. [33]):

Newtonian Lagrangian ←→ Relativistic comoving

d

dt
←→ ∂

∂η

∂ivj ←→ ϑij

δN ←→ δ

After the consideration of a geometrical equivalence between the de-
formation tensor and the Ricci curvature, the 00-component of the Ein-
stein field equation, the energy constraint, can be written as [31]

ϑ2 − ϑijϑ
j
i + 4Hϑ+3 R = 16πGa2ρ̄δ , (2.159)

A similar equation can be derived from the Newtonian conservation of
energy equation with the total energy given by EN = 1/2v2 − ϕN .
In that case, one can show that, at first order, the pertrurbative part
of the Newtonian (conserved) energy is equal to the spatial curvature
3R(1) = −4∇2δE

(1)
N .

At non-linear order the correspondence with the Newtonian energy
conservation is broken but the Ricci three-curvature is still time-independent
as shown in [34] and can be expanded in terms of the (non-linear) metric
potentials encoded in γij as we shall show below.

At large scales, the differences between the Newtonian and relativistic
descriptions of the non-linear inhomogeneities lie within the constraint
equation, and are dominated by the spatial curvature term. This is
justified in the following through a gradient expansion. In particular,
we show that the curvature terms are dominant at early times in the
relativistic constraint (2.159). As we shall see, such contributions also
include the primordial non-Gaussianity, if present.
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2.8.2 Perturbative and gradient expansion of the rel-
ativistic contribution

Restoring to a perturbative expansion, the scalar quantities can be writ-
ten such:

δ = δ(1) +
1

2
δ(2) +

1

6
δ(3) + . . . (2.160)

where the superscript in parenthesis indicates the perturbative expansion
order.

For the linear order, the solution for the density contrast is

δ(1) =
D+(η)

10HIND+IN
(−4∇2ζ(1)) , (2.161)

where the growth factor in Einstein-de Sitter Universe is [35]

D+ =
D+INH2

IN

H2
, (2.162)

and where the subindex IN represents values at an arbitrary initial time
in the matter-dominated universe. This is in complete equivalence with
the Newtonian standard perturbation theory case, if we identify the cur-
vature perturbation ζ and −ϕN .

The curvature perturbation ζ is one of two scalar degrees of freedom
that are encoded in the spatial metric, this perturbation is considered
to have nearly Gaussian distribution from the slow-roll inflation model.
The other scalar of the metric in this gauge is χ. Which is the traceless
part of γ, and thus it has no equivalence with the longitudinal functions
of the Newtonian theory. Considering the synchronous-comoving gauge,
the expansion for γij is

γij =exp[2ζ]δij +

(
∂i∂j −

1

3
∇2

)
χ

=

[
1 + ζ(1) + 2ζ(1)2 + ζ(2) + (∂i∂j −

1

3
∇2)

(
χ(2) +

1

2
χ(2)

)]
+ . . .

(2.163)
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note that χ encodes the traceless perturbation of the spatial metric
through derivatives. This makes χ a subdominant variable in a gra-
dient expansion. The large scales contributions are thus dominated by
the conformal perturbation ζ, which besides corresponds to the curvature
perturbation in the uniform density gauge [36], then it can be written as

gij = a2γij = a2e2ζ γ̄ij, (2.164)

where γ̄ij is the conformal part of the spatial metric. This explicitly
shows that ζ is responsible for all inhomogeneous part of the isotropic
expansion. The above can be used to set initial conditions in the early
Universe after inflation. In such scenario, the curvature perturbation
ζ is nearly scale-invariant and remains constant for modes outside the
cosmological horizon. Then, in order to capture the contribution of rel-
ativistic terms, we perform a gradient expansion (long-wavelength ap-
proximation), where the spatial gradients are small compared to time
derivatives. We thus note that the following perturbed quantities are of
second order:

δ ∼ ϑ ∼ 3R ∼ O
[
∇2
]

. (2.165)

If we stick to the large-scales in a gradient expansion in powers of ∇/H,
which is the regime where the relativistic corrections are expected to
be significant, then it can be shown that the dominant contribution to
the three-curvature, the relativistic counterpart of the gravitational en-
ergy, comes from the conformal metric potential ζ. Given the conformal
transformation gij = a2e2ζ γ̄ij where the conformal factor is e2ζ the spa-
tial curvature is then:

3R = e−2ζ
[
−4∇2ζ − 2(∇ζ)2

]
, (2.166)

Consequently we can safely adopt the approximation γ̄ij ≃ δij which
leaves out the traceless parts of the curvature. Thus the spatial curvature
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takes the form

3R = −4∇2ζ +
∞∑

m=0

(−2)m+1

(m+ 1)!
[(m+ a)(∇ζ)2 − 4ζ∇2ζ]ζm, (2.167)

valid at large scales and at non-linear order [34], [37].
With the equation (2.222), one can obtain solutions for the density

contrast at higher orders. Even for m = 1 in equation (2.167) one can
find third order corrections as follows

3R = −4∇2ζ +(−2)[(∇ζ)2− 4ζ∇2ζ] + 2[2(∇ζ)2− 4ζ∇2ζ]ζ . (2.168)

The Ricci scalar at large scales (at second order in a gradient expansion)
and considering scalars only in light of non-Gaussian initial fields, is
given in terms of the first order perturbation field factors as

3R ≃ −4∇2ζ(1)+
(
∇ζ(1)

)2 [
−2− 24

5
fNL

]
+ ζ(1)∇2ζ(1)

[
−24

5
fNL + 8

]
+ζ(1)

(
∇ζ(1)

)2 [
−216

25
gNL +

24

5
fNL + 4

]
+ζ(1)2∇2ζ(1)

[
−108

25
gNL +

72

5
fNL − 8

]
+O(ζ(1)4) .

(2.169)
This expression sums up the justification for the present work: The

three-curvature 3R encodes the differences, at the level of constraints,
between the Newtonian and the Relativistic formalisms of structure for-
mation, since the evolution equations (2.157) and (2.158) for a cold dark
matter component are identical at non-linear level between these two
formalisms (at large scales, where the gradient expansion remains valid).
This means that Relativistic initial conditions included in 3R can be
evolved employing a Newtonian hydrodynamical code, or its equivalents,
and the results remain consistent with GR. Moreover, we notice that even
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in the case that initial conditions limited to relatively large scales, i.e.,
at lowest order in the gradient expansion ∇/H, we can still express the
relativistic contributions in terms of ζ, and also allow for a non-linear
primordial ζ, that is, to include primordial non-Gaussianities.

These considerations argue that the formalism presented can be im-
plemented in hydrodynamic codes (e.g. [38] or [39]) or codes which show
equivalence with the hydrodynamical description at large scales, such as
L-PICOLA [7], which we discuss in more detail in the following Sec. 3.1.
This allows for the evolution of initial conditions which include relativis-
tic constraints through Newtonian equations1.

As conclusion this section, we explicitly present the matter density
field up to third order in perturbation theory which will be specifically
employed in setting initial conditions for numerical simulations. This
represents the homogeneous part of the solution to the constraint (2.159)
(valid at second order in a gradient expansion) [37], [42].

1

2
δ(2) =

D+(η)

10H2D+IN

24

5

[
−(∇ζ(1))2

(
5

12
+ fNL

)
+ ζ(1)∇2ζ(1)

(
5

3
− fNL

)]
,

(2.170)
1

6
δ(3) =

D+(η)

10H2
IND+IN

108

25

[
2ζ(1)(∇ζ(1))2

(
−gNL +

5

9
fNL +

25

54

)
+ ζ(1)2∇2ζ(1)

(
−gNL +

10

3
fNL −

50

27

)]
.

(2.171)
Afetrwards in the section 3.2 we implement these solutions as initial

conditions for a numerical simulation in order to compute the polyspec-
tra of the evolved density field for cases of interest. We also employ these
last two expressions to complement the usual (Newtonian) one-loop con-
tributions to the power spectrum as detailed in Ref. [42], and implement

1Expressions for the Lagrangian displacement with relativistic input have been discussed in
previous works, [40], [41]. These can be regarded as strategies to modify the initial conditions
generating code to support directly the grid-based setup.
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them as discussed in Sec. 3.2.1.

2.9 Statistical description of matter

2.9.1 2-point correlation function

From inflation theory and observations, it is determined that the pri-
mordial perturbations have a nearly Gaussian distribution and the same
stands for the density field. The 2PCF is defined as the excess of prob-
ability of finding an object given a Gaussian distribution. Considering
n = 2, we have the two point correlation function as:

ζ2pcf(x1,x2) =< δ1(x1)δ1(x2) >=
1

C(x1,x2)
, (2.172)

with the help of Wick’s theorem one can calculate the average of a prod-
uct of an even number of δ1, which is the sum over all the possible parings
of δ1 with each other:

< δ1(x1)δ1(x2)... >=
∑

pairings

∏
pairs

< δ1δ1 > . (2.173)

Considering the Gaussian case, all high order (n>2) correlation functions
are thus products of the two point correlation function if n is even, and
vanish is n is odd. From equation (2.172), the covariance matrix is
related to the correlation function as:∫

d3zζ2pcf(x, z)C
−1(z,y) = δ3(x− y) . (2.174)

At large scales, the Universe behaves statistically homogeneous and isotropic,
so ζ(x, z) and C(x, z) depend only on the coordinates separation:∫

d3zζ2pcf(x− z)C−1(z − y) = δ3(x− y) , (2.175)
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in Fourier space, this equation is:

C(q) =
1

PL(q)
, (2.176)

where PL(q) is the linear power spectrum, which is related to the two
point correlation function (2PCF) via the Fourier transform

ζ(r) =

∫
d3q

(2π)3
PL(q)e

iq·r . (2.177)

2.9.2 One-loop approximation

We describe the perturbations in the Lagrangian Perturbation Theory
and in real space displacement as

δ(x) =

∫
d3qδ3[x− q −Ψ(q)]− 1 , (2.178)

The power spectrum can be defined as the correlation between δ̃(k)
and δ̃(k′)

⟨δ̃(k)δ̃(k′)⟩ = (2π)3δ3(k + k′)P (k) (2.179)

where δ̃ is the Fourier transform of the density contrast

δ̃(k) =

∫
d3xe−ik·xδ(x) (2.180)

In terms of the Lagrangian displacement, the power spectrum is

P (k) =

∫
d3qe−ik·q

(
⟨e−k[Ψ(q1)−Ψ(q2)]⟩ − 1

)
(2.181)

The cumulant of equation (2.181) can be expanded through the ex-
pansion theorem for the expected value of the exponential function

K = ⟨e−iX⟩ = exp

[ ∞∑
N=1

(−i)N

N !
⟨XN⟩c

]
(2.182)
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where we can have two approaches depending on how the resummation
is done. One called Integrated Perturbation theory (IPT) where the
exponential terms evaluated at q = 0 are kept and the other called
CLPT (Convolution Lagrangian Theory) where the terms that go to
zero as q −→∞ are expanded.

Integrated Perturbation Theory

Applying the cumulant expansion theorem to the exponent of eq. (2.181)〈
{k · [Ψ(q1)−Ψ(q2)]}N

〉
c
=[1 + (−1)N ]

〈
[k ·Ψ(0)]N

〉
c
+

N−1∑
j=1

(−1)N−j
(
1

a

)〈
[k ·Ψ(q1)]

j[k ·Ψ(q2)]
N−j〉

c
,

(2.183)

In this equation, only N >= 2 cases survive because < Ψ >= 0 to
maintain parity symmetry, and the power spectrum expression can thus
be expressed as:

P (k) = exp

[
−2

∞∑
n=1

ki1...kiN
(2n)!

A
(2n)
i1...i2n

∫
d3qe−ik·q ×{

exp

[ ∞∑
N=2

ki1...kiN
N !

B
(N)
i1...iN

]
− 1

}
,

(2.184)

where:
A

(2n)
i1...i2n

= (−1)n−1 ⟨Ψi1(0)...Ψi2n(0)⟩c (2.185)

B
(N)
i1...iN

(q) = iN
N−1∑
j=1

(−1)j
(
N

J

)
×
〈
Ψi1(q1)...Ψij+1

(q1)Ψij+1
(q2)...ΨiN (q2)

〉
c
.

(2.186)
The term A is the cumulant for a single position displacement vector
and B the cumulant where the displacement vector lies at a distance qi.
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These quantities are useful to used them in terms of polyspectra of the
displacement field Ci1...iN (i.e. using high order spectra terms) that are
defined as:〈
Ψ̃i1(p1)...Ψ̃iN (pN)

〉
c
= (2π)3δ3(p1+...+pN)(−i)N−1Ci1...iN (p1, ...,pN) ,

(2.187)
where the Fourier transform of the displacement field is:

Ψ̃i(p) =

∫
d3qe−ip·qΨi(q) . (2.188)

To ensure that the polyspectra are real numbers, they must satisfy the
relation:〈

Ψ̃i1(p1)...Ψ̃iN (pN)
〉∗
c
= (−1)N

〈
Ψ̃i1(p1)...Ψ̃iN (pN)

〉
c

, (2.189)

so the polyspectra meets:

Ci1...iN (−p1, ...,−pN) = (−1)NCi1...iN (p1, ...,pN) . (2.190)

Given these identities, the equations (2.185) and (2.186) in terms of the
polyspectra are:

A
(2n)
i1...i2n

=

∫
d3p1
(2π)3

...
d3p2
(2π)3

δ3(p1 + ...+ p2n)× Ci1...i2n(p1, ...,p2n) ,

(2.191)

B
(N)
i1...iN

(q) =
N−1∑
j=1

(−1)j(NJ)×
∫

d3p1
(2π)3

...
d3p2
(2π)3

δ3(p1 + ...+ pN)×

ei(p1+...+pj)·qCi1...iN (p1, ...,pN) .

(2.192)
The perturbative displacement field terms in Foruier space can be

expressed in perturbative kernel L expansions as:

Ψ̃(n)(p) =
iDn

n!

∫
d3p1

(2π)3
...
d3pn
(2π)3

(2π)3δ3

(
n∑

j=1

pj − p

)
L(n)(p1, ..., pn)δ

(1)(p1)...δ
(1)(pn)

(2.193)
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The L kernels up to third order have the forms:

L(1)(p1) =
k

k2
(2.194)

L(2)(p1, p2) =
3

7

k

k2

[
1−

(
p1 · p2

p1p2

)]
(2.195)

L(3a)(p1, p2, p3) =
5

7

k

k2

[
1−

(
p1 · p2

p1p2

)]{
1−

[
(p1 + p2) · p3

|p1 + p2|p3

]2}

− 1

3

k

k2

[
1−

(
p1 · p2

p1p2

)2

+ 2
(p1 · p2)(p2 · p3)(p3 · p1)

p21p
2
2p

2
3

]
k × T (p1, p2, p3)

(2.196)

where T is the transverse part. The relation of the perturbative terms of
the displacement field with the polyspectra for two and three terms are:〈

Ψ̃
(n)
i (p)Ψ̃

(m)
j (p′)

〉
c
= (2π)3δ3(p + p′)C

(nm)
ij (p) , (2.197)

〈
Ψ̃

(n)
i (p1)Ψ̃

(m)
j (p2)Ψ̃

(l)
k (p3)

〉
c
= (2π)3δ3(p1 + p2 + p3)C

(nml)
ijk (p1, p2, p3) .

(2.198)
The polyspectra in terms of the kernels REF are:

C
(11)
ij (p) = Li(p)

(1)Lj(p)
(1)PL(p) (2.199)

C
(22)
ij (p) =

1

2

∫
d3p′

(2π)3
L
(2)
i (p′, p − p′)PL(p

′)PL(|p − p′|) (2.200)

C
(13)
ij = C

(31)
ji =

1

2
L
(1)
i (p)PL(p)

∫
d3p′

(2π)3
L
(3)
j (p,−p′, p′)PL(p

′) (2.201)

C
(112)
ijk (p1, p2, p3) = C

(211)
kij (p3, p1, p2) = C

(121)
jki (p2, p3, p1) =

− L(1)
i (p1)L

(1)
j (p2)L

(2)
k (p1, p2)PL(p1)PL(p2)

(2.202)
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So the expression of the power spectrum from quantities A and B in
terms of polyspectra is:

P (k) = exp

[
−kikj

∫
d3p

(2π)3
C

(11)
ij (p)

]
×
{
kikj

[
C

(11)
ij (k) + C

(22)
ij (k) + C

(13)
ij (k)+

C
(31)
ij (k) + kikjkk

∫
d3p

(2π)3

[
C

(112)
ijk (k,−p,p− k) + C

(121)
ijk (k,−p,p− k) +

C
(211)
ijk (k,−p,p− k) +

1

2
kikjkkkl

∫
d3p

(2π)3
C

(
ij11)(p)C

(11)
kl (k − p)

}
,

(2.203)

where integrating the cumulants, the nonlinear power spectrum at one
loop in the Integrated Perturbation theory is:

P (k) =

[
− k2

6π2

∫
dpPL(p)

]
×
{
PL(k) +

1

98

k3

4π2

∫ ∞
0

drPL(kr)∫ 1

−1
dxPL[k(1 + r2 − 2rx)1/2]

(3r + 7x− 10rx2)2

(1 + r2 − 2rx)2
+

1

252

k3

4π2
PL(k)∫ ∞

0

drPL(kr)

[
12

r2
+ 10 + 100r2 − 42r4 +

3

r3
(r2 − 1)3(7r2 + 2) ln

∣∣∣∣1 + r

1− r

∣∣∣∣] } .

(2.204)

2.9.3 Convolution Lagrangian Perturbation Theory

Using the displacement vector field as:

∆ = Ψ(q2)−Ψ(q1) , (2.205)

equation (2.182) is expressed as:

logK =
∞∑

N=1

(−i)N

N !

〈
(k ·∆)N

〉
c

(2.206)

So the power spectrum from REF can be written as

(2π)3δD(k)+P (k) =

∫
d3q eik·qexp

[
−1
2
kikj⟨∆i∆j⟩c −

1

6
kikjkk⟨∆i∆j∆k⟩c

]
,

(2.207)
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where different resummation schemes will lead us to different expressions
for the power spectrum.In the previous section, we adopted the resum-
mation evaluating the exponential terms in q = 0 [43]. In this section
we expand the terms that goes to zero as q −→ ∞. Considering up to
the third cummulant using the expansion at q −→∞ we obtain

logK = −1
2
kikkAij(q) +

i

6
kikjklWijl(q) . (2.208)

Which implies the evaluation of two cumulants

Aij(q) = ⟨∆i∆j⟩c

Wijk(q) = ⟨∆i∆j∆k⟩c (2.209)

So the expression for the PS is

(2π)3δD(k)+P (k) =

∫
d3q ei·qexp

[
−1
2
kikjAij(q) +

i

6
kikjklWijl(q)

]
.

(2.210)
The displacement cumulant can de decomposed as

Aij(q) = X(q)δKij + Y (q)q̂iq̂j (2.211)

Wijk(q) = V (q)q̂{iδKjk} + T (q)q̂iq̂j q̂k (2.212)

X(q),Y (q),V (q) and T (q) are scalar functions that depend of the ampli-
tude of separation q. Contracting the indexes of the tensors and solving
the system we get

A0 ≡ δKijAij = 3X + Y

A⃗ ≡ q̂iq̂jAij = X + Y

}
−→ X = 1/2 (A0 − A⃗)

Y = 1/2 (3A⃗− A0) ,
(2.213)

for the second cumulant we have

W0 ≡ q̂iδ
K
ijWijk = 5V + T

W⃗ ≡ q̂iq̂j q̂kWijk = 3V + T

}
−→ V = 1/2 (W0 − W⃗ )

T = 1/2 (5W⃗ − 3W0) .

(2.214)
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Thus PS can be re-written as

(2π)3δD(k)+P (k) =

∫
d3qeiµk(q−

1
2k

2V )exp
[
−1
2
k2(X + µ2Y )− i

6
µ3k3T

]
(2.215)

2.10 Primordial non-Gaussianity

The behavior of the quantum fluctuation during inflation, determined the
well potentials where matter eventually fell into them, that distribution
is printed in the actual halos and galaxies distribution. From the CMB
which is the earliest information we have, we can measure the primordial
distribution and it tells us that it is not strictly Gaussian; it has some de-
viations that, as will be mentioned afterwards, can be parametrized into
parameters from the curvature perturbations such as fNL, gNL, hNL,...

(these parameters will be described in later sections). The restriction for
non-Gaussianity parameters from the CMB are −154 < fNL < 94 and
−5.6× 105 < gNL < 6.4× 105.

On the other hand, considering a single scalar field ( φ) and radiation
fluid ( γ) , we can use the fact that the total second-order curvature
perturbation, can be written in terms of first-order perturbations such
as:

ζ(2) = −Hδ
(2)ρ

ρ′
−
[
fζ(1)φ + (1− f)ζ(1)γ

] [
f 2ζ(1)φ + (1 + f)(2 + f)ζ(1)γ

]
,

(2.216)
where

ζ(1)φ = −H
(
δ(1)ρφ
ρ′φ

)
(2.217)

ζ(1)γ = −H
(
δ(1)ργ
ρ′γ

)
. (2.218)

In a longitudinal gauge, for large scales, the relation between the density
curvature perturbation ζ(1) and the comoving curvature perturbation
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R(1) is ζ(1) ∼ −R(1). The second-order curvature perturbation in terms
of the first-order element in a slow-roll scenario is:

R(2) = (η − 3ε)
(
R(1)

)2
+ I, (2.219)

where I is an integral of non-local operators. In Fourier space, the
curvature perturbation is:

R(k) =R(1)(k) +
1

(2π)3

∫
d3k1d

3k2δ
(3)(k1 + k2 − k)×

fNL(k1,k2)R(1)(k1)R(1)(k2),

(2.220)

where the fNL have the slow-roll parameters such as:

fNL(k1,k2) =
1

2
(η − 3ε) + I(k1,k2). (2.221)

2.10.1 Primordial Non-Gaussianity triangle config-
urations

The expansion for the curvature perturbations in terms of a Gaussian
random field, are:

ζ = ζ(1) +
3

5
fNLζ

(1)2 +
9

25
gNLζ

(1)3 +
27

125
hNLζ

(1)4 + ... . (2.222)

where ζ(1) is the Gaussian random field and the parameters fNL, gNL, hNL

are the amplitude of the different orders of the expansion. Considering
just a second order and local effects, we have the curvature perturbations
as:

ζ = ζ(1) +
3

5
f localNL

[
ζ(1)2 −

〈
ζ(1)2

〉]
. (2.223)

As the power spectrum, we analyze the correlation of 2 points that take
form of a line, the bispectrum forms triangle due we correlate 3 points
of k:

B(k1, k2, k3) =
6

5
f localNL [P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)] ,

(2.224)
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Figure 2.7 Shapes of non-Gaussianity

so these triangles may have different shapes, where we denote the shape
function as:

S(k1, k2, k3) ≡ N(k1, k2, k3)
2B(k1, k2, k3) , (2.225)

we can establish the shape function for the local and equilateral models
as:

Slocal(k1, k2, k3) ∝
k31k

3
2k

3
3

∆3
1(k1k2k3)

, (2.226)

Sequil(k1, k2, k3) ∝
3(k31k

3
2k

3
3)− 2(k1 + k2 + k3)

∆3
1(k1k2k3)

, (2.227)

where with the rescaling xi ≡ ki/k1 we have the shapes of non-Gaussianity
as Figure 2.7.
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2.11 3 point correlation function

The three point correlation function (3PCF)is a valuable statistic tool
which contains information that cannot be extracted from the 2PCF.
The three point correlation is an indicator of the deviation from Gaussian
statistics. To account for it, instead of counting pairs, for the 3PCF we
are counting triplets (i.e. triangles), and some important information
will be in the different configuration of triangles. If we had a perfectly
gaussian distribution, the correlation functions of order higher than two
would all be written in terms of the 2PCF. The bispectrum is defined as
the Fourier transform of the three point correlation, which means

ξ(3)(r1, r2, r3) =
1

(2π)6

∫
d3k1d

3k2d
3k3B(k1,k2,k3)

× ei(k1·r1+k2·r2+k3·r3)δD(k1 + k2 + k3)

(2.228)

There are three known sources for a non-zero bispectrum [1].
a) Primordial non-gaussiantiny: This can be described by the

local expression for Bardeen’s curvature perturbations during the matter
era

Φ(x) = ΦG(x) + f locNL

[
Φ2

G(x)− Φ2
G(x)⟩

]
(2.229)

where ΦG(x) is a Gaussian field and f locNL is the amplitude of primordial
non-gaussianity in the so-called local limit. The contribution of this
amplitude to the bispectrum is given by

Blocal
Φ = 2f locNL C

2
Φ

[
1

k4−n1 k4−n2

+ cyc.
]

, (2.230)

which quantifies the variations on the power spectrum. The primordial
matter bispectrum is then given by

BI(k1, k2, k3) =M(k1)M(k2)M(k3)BΦ(k1, k2, k3) , (2.231)
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The reduced bispectrum is often used in order to have a more visual
representation. The reduced bispectrum for BI is

Q(k1, k2, k3) =
BI(k1, k2, k3)

P (k1)P(k2) + cyc.
. (2.232)

b) Due non-linear gravitational evolution As time goes by,
matter interacts via gravitational forces, which produces a deviation
from even the primordial distribution making the actual distribution
non-linear. On large scales the density fluctuations can be studied with
perturbation theory (described in Chaper 3), up to second order in δ is

δk ≃ δ
(1)
k +

∫
d3q1d3q2δD(k − q12)F2(q1, q2)δ

(1)
q1
δ(1)q2

, (2.233)

where F2(q1, q2) is the kernel for the evolution of the perturbation. And
the contribution to the bispectrum is given by

Bg(k1, k2, k3) = 2F2(q1, q2)PL(k1)PL(k2) + cyc. . (2.234)

The bispectrum of matter density fluctuation is given by the primordial
bispectrum (equation (2.230)) and the one due the gravitational evolu-
tion (equation (2.234))

B(k1, k2, k3) = BI(k1, k2, k3) +BG(k1, k2, k3) (2.235)

The reducen bispectrum is

Q(k1, k2, k3) = QI(k1, k2, k3) +QG(k1, k2, k3) =

BI(k1, k2, k3)

P (k1)P(k2) + cyc.
+
BG(k1, k2, k3)

BI(k1, k2, k3)
P (k1)P(k2) + cyc. .

(2.236)

c) Due non-linear galaxy bias We can assume that galaxy for-
mation is a local process and depends only on the local matter density
field. We can expand in Taylor series the matter overdensity as

δgx ≃ b1δ(x) +
1

2
b2δ

2(x) , (2.237)
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Figure 2.8 Configuration dependence of the reduced bispectrum
of dark matter distribution from Gaussian and non-Gaussian ini-
tial conditions, as a function of an angle θ [1].

where b1 and b2 are the linear and non-linear bias parameters. The galaxy
bispectrum is then

Bg(k1, k2, k3) ≃ b31B(k1, k2, k3) + b21b2[PL(k1)PL(k2) + cyc.] . (2.238)

In Figure 2.8 one can appreciate the reduced bispectrum for different
values of an inital fNL and different redshifts.

We can see how the different contributions to the bispectrum a), b)
and c) affect the shape and the triplet counts.

2.12 Covariance matrix

As of late the covariance matrix has been an important tool to precision
cosmology because it can be employed in many different ways. It can be
used for measuring statistical properties of different realizations of sim-
ulated artificial catalogs or given a data set of cosmological parameters.
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The covariance matrix can also be used for estimating the dependence
between different scales analyzing the non-diagonal data of the covari-
ance matrix. Defining the 2 point correlation function of a density field
δ in cells i, j as:

ξij = δiδj (2.239)

Cov(ξij, ξkl) = ⟨ξijξkl⟩ − ⟨ξij⟩ ⟨ξkl⟩ = ⟨δiδjδkδl⟩ − ⟨δiδj⟩ ⟨δkδl⟩ =
⟨ξijkl⟩+ ⟨ξik⟩ ⟨ξjl⟩+ ⟨ξil⟩ ⟨ξjk⟩

(2.240)

Recent studies have proposed new calculations for covariance matri-
ces using an expansion of the two point correlation function. Firstly it is
considered a two point correlation function estimator in radial-angular
space (r, µ), where µ = cos θ, in this case, the Landy-Szalay estimator
yields:

ξ̂(r, µ) =
NN(r, µ)

RR(r, µ)
, (2.241)

considering a simulation or galaxy catalog as D and a random distribu-
tion R, then N = (D − R). Taking a bin for the radial and angular
coordinates a and c respectively:

ξ̂ac =
NNa

c

RRa
c

, (2.242)

the terms of the fraction are defined as:

NN c
a =

∑
i̸=

ninjwiwjΘ
a(rij)Θ

c(µij)δiδj , (2.243)

RRc
a =

∑
i ̸=

ninjwiwjΘ
a(rij)Θ

c(µij) , (2.244)
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where Θ is the binning matrix that takes the value of 1 if contains the
points i, j and 0 if not. So equation (2.240) is:

cov(ξ̂ac , ξ̂
b
d) ≡ Cab

cd =
〈
ξ̂ac ξ̂

b
d

〉
−
〈
ξ̂ac

〉〈
ξ̂bd

〉
=

1

RRa
cRR

b
c

∑
i̸=j

∑
j ̸=l

ninjnknlwi, wjwkwlΘ
a(rij)Θ

c(µij)Θ
b(rkl)Θ

d(µkl)

[⟨δiδjδkδl⟩ − ⟨δiδj⟩ ⟨δkδl⟩] ,

(2.245)

where:

⟨δiδjδkδl⟩ − ⟨δiδj⟩ ⟨δkδl⟩ = ξ
(4)
ijkl + ξikξjl + ξilξjk , (2.246)

where ξ(4)ijkl is the four point correlation function

⟨δiδjδkδl⟩ − ⟨δiδj⟩ ⟨δkδl⟩ ∼
α

nj
⟨(1 + δi)δiδk⟩ =

α

ni
∼ (ζijk + ξik)

(2.247)
α is the shot-noise rescaling factor. ζijk is the three point correlation
function, and the equation can be rewritten in terms of the the weight
function as:

⟨δiδjδkδl⟩ − ⟨δiδj⟩ ⟨δkδl⟩ ∼
α2

ninj
⟨(1 + δi)δiδk⟩ =

α2

ninj
∼ (1 + ξij) .

(2.248)
Using the identity: ∑

i̸=j

∑
k ̸=l

Xij (2.249)

So the full covariance matrix is:

Cab
cd = 4Cab

cd + α× 3Cab
cd + α2 × 2Cab

cd (2.250)

2.12.1 Fisher Matrix

The Fisher Information Matrix if often used to compute the accuracy of
cosmological parameters from simulations, which is the expectation value
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of a given quantity Θ in the point Θ = Θ0 (where Θ = (θ1, θ2, ..., θm))
coincides in the maximum likelihood point on average. It relates to the
covariance matrix as:

Fij = C−1ij . (2.251)

The Fisher Matrix can be interpreted as how quick the likelihood function
converges around the maximum likelihood point. This is defined as:

Fi,j = −
〈
∂ ln f

∂θi∂θj

〉
, (2.252)

where L is the likelihood function. From a Gaussian distribution:

Fij =
1

2
tr

[
C−1

∂C

∂θi
C−1

∂C

∂θj

]
+
∂µt

∂θi
C−1

∂C

∂θi
. (2.253)

We take the inverse of the squared Fisher matrix of equation (2.254) to
compute the variance given a certain volume [44]; that is,

Fi,j =
Vs
4π2

∫ 1

−1
dµ

∫ kmax

kmin

dk
∂P (k, µ)S

∂pi

(
P (k, µ) +

1

n

)−2
∂P (k, µ)S

∂pj
.

(2.254)
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Chapter Three

Implementation in
numerical simulations
We studied Perturbation theory which allow us to have an analysis at
a slightly non-linear but analytical regime. Using numerical techniques,
we can have a (nearly) fully non-linear evolution. With current tech-
nological improvements, numerical simulations has been widely used in
astronomy and astrophysics, from stats formations to the study of large
scale structures for cosmological volumes. In this work, we focus on
cosmological N-body simulations.

First, we analyze de impact of the different solutions for the power
spectrum. In Figure 3.1 we can find the power spectrum fully described
in Section 3.1, where it can be seen that the higher order (the orange
line, where nonlinear 2LPT approximation described below)) generates
larger amplitude at high k, but at large-scales the three approximations
have a good agreement.

3.1 N-body simulations with COLA method

The COLA method has a more accurate approximation than 2LPT, with
less computation time. For this method, the prescription for the second
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Figure 3.1 Matter power spectrum computed through several
approximations. First is the linear Eulerian result in blue. The
green line corresponds to the linear Lagrangian or Zel’dovich ap-
proximation, and the second order (2LPT) approximation is given
by the orange line.

order of the growth function in a ΛCDM background is:

D2(τ) = −
3

7
D2

1(τ)Ωm(τ)
−1/143 . (3.1)

The equation for the displacement is split as follows:

T [Ψres] + T [D1]Ψ
(1) + T [D2]Ψ2 +∇2Ψ = 0 (3.2)

where Ψres is the remaining displacement when we subtract the quasilin-
ear 2LPT displacements from the full, non-linear displacement for each
particle, and the operator T [X] is:

T [X] =
d2X

dτ 2
+HdX

dτ
. (3.3)
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For the gradient of Φ the Particle-Mesh algorithm in Fourier space is
used as:

∇Φ = IFFT

[
3

2

Ωm,0k

ak2
× FFT [ρ(x)− 1]

]
(3.4)

The equation (3.2) is discretized using the Kick-Drift-Kick algorithm
where at each iteration the velocity and position of each particle is up-
dated based on the gravitational potential Φ and the stored 2LPT dis-
placements.

vi+1/2 = vi−1/2 − T [Φres]∆a1 , (3.5)

ri = rivi+1/2∆a2 +∆D1Ψ1 +∆D2Ψ2 , (3.6)

where ∆D = Di+1 − Di is the change in time of the growth functions.
∆ai are the time intervals for each time-step:

∆a1 =
H0

nLPT

anLPT
i+1/2 − anLPT

i−1/2

anLPT−1
i

, (3.7)

∆a1 =
H0

anLPT
i+1/2

∫ ai+1

a1

anLPT−3

H(a)
da , (3.8)

where the choice for ∆ai is arbitrary, also nLPT but the value of 25 has
shown the best results. The COLA method [7], [8] employs a fixed par-
ticle mesh using PM algorithm (Particle-Mesh), where a mesh is placed
over the particles and solve for the gravitational interactions at each
mesh point then, the force is interpolated to find the values for each
particle. The steps at each iteration is:

• Linear interpolation via Cloud-in-cell method to establish the mass
density ρ(x) at each mesh point.

• Use the Fourier transform to solve the comoving Poisson equation:

k2ϕ(k) =
3

2

Ωm,0

a
(ρ(k)− 1) (3.9)

71



• Then with the gravitational potential and the inverse Fourier Trans-
form, the force in each direction in real space is generated.

• The acceleration is calculated using the Cloud-in-Cell interpola-
tion.

Figure 3.2 Initial conditions of a Gaussian simulation

In Figure 3.2 is the initial conditions for a Gaussian simulation with
10243 particles. In Figure 3.3 is the result of the gravitational evolution
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Figure 3.3 Evolution at z = 1 for the Gaussian initial conditions

in 70 steps until a redshift of z = 1. We can observe the formation of high
density zones (white) and very low density zones called voids (black). In
the following sections we will mention the difference with the relativistic
and PNG initial conditions.
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3.1.1 Numerical effects in simulations

Given the initial conditions with the same box size, the number of par-
ticles will determine the resolution of the simulation as:

Res =
Number of particles

Length of the box
. (3.10)

Figure 3.4 is a ΛCMD simulation in L-PICOLA where all the parameters
are constant (Boxsize=1024 MPc, steps=40) except for the number of
particles. The nomenclature is as follows: l corresponds to low resolution
where the number of particles is 256,m corresponds to medium resolution
where the number of particles is 512 and h corresponds to low resolution
where the number of particles is 1024. The initial conditions established
at redshift z = 49. It can be seen that for redshift z = 0 the non-
linearities due evolution at k = 1 have more amplitude in h resolution
than m resolution and l resolution can not detect those scales due the
number of particles. The "hook-like" morphology at the highest k for
the power spectra are an effect of the boxsize and number of particles,
it is not a physical effect.

3.1.2 Effects due to number of steps

The number of steps in cosmological simulations determines the quality
of how the equations of motion will be numerically solved. In Figures
3.5 and 3.6 one can observe that the non-linearities at small scales are
the most affected when choosing the number of steps, the higher they
are, the better the non-linearities can be reproduced, also this factor has
more of an impact at small redshift z where the non-Gaussianity due
evolution is higher and not very well reproduced when choosing a small
number of steps.
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Figure 3.4 Cosmological simulations with different resolutions

Figure 3.5 Power spectrum for cosmological simulations with
same parameters except for the number of steps.
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Figure 3.6 Power spectrum ratio for cosmological simulations
with same parameters except for the number of steps.

3.1.3 Effects of the volume in the Fisher Matrix

Because the Fisher Matrix is used for survey error analysis, it is impor-
tant to have a sensitivity of how the parameters behave. One off these
parameters is how the volume affects the the different scales. In the Fig-
ure 3.7, we used equation (2.254) for different seen area from a survey.
The orange shadow corresponds to a Eucid like-survey.
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Figure 3.7 Sensitivity for different areas detected by a survey.

3.2 Initial Condition implementation and Nu-
merical Evolution

The main objective in this thesis is the implementation of the PNG and
relativistic contributions of Eqs. (2.170) and (2.171) into L-PICOLA, for
this is needed to change from the density contrast to the gravitational
field. This modifications are relevant because now we are capable to
have primordial contributions in Newtonian evolution for cosmological
simulations in order to study the early Universe. As a first approxima-
tion this was implemented into a fixed-mesh code and for future works
this also can be tested for adaptive-mesh and more computational re-
sources demanding codes as Gadget or also into full-GR evolution codes
as GRAMES of GEVOLUTION.

In order to introduce a set of initial values of the density field suit-
able for L-PICOLA, we modify the 2LPTic code [9], and more specifically
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the extension in [45], originally produced to include PNG initial condi-
tions. Our modification incorporates the relativistic solutions previously
presented in Sec. 2. Specifically, we implement a modification to the
kernel of the gravitational potential which meets Poisson’s equation at
all perturbative orders

∇2ϕ =
3

2
H2Ωmδ , (3.11)

where δ is given by the expression (2.160). The Newtonian potential
coincides with the comoving curvature perturbations at first-order, so
that at linear level we write

ϕlin =
3

5
Rc ≈ −5

3
ζ(1) . (3.12)

in an equivalence valid for the large scales and early times, where our
initial conditions are set.

Since the initial conditions code assumes the Poisson equation as
valid at all orders, we introduce to that equality the expressions for the
Fourier-space equivalent of the density contrast at second and third order
in Eqs. (2.170) and (2.171). By rewriting these contributions in terms of
the linear potential we can express the non-linear initial potential as a
sum of kernels of up to third order as

ϕlin = ϕ(1) +
1

2
ϕ(2) +

1

6
ϕ(3) , (3.13)

with

ϕ(2) = − 72

625

[
(∇ϕlin)2(

5

12
+ fNL) + ϕlin∇2ϕlin(

5

3
− fNL)

]
(3.14)

ϕ(3) =− 972

15625

[
2ϕlin(∇ϕlin)2

(
gNL −

5

9
fNL −

25

54

)
+

ϕ2lin∇2ϕlin

(
gNL −

10

3
fNL +

50

27

) (3.15)
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It is through these expressions that we modify the 2LPTic code using
its own aliases for all of the terms contributing to the matter initial
conditions.

3.2.1 The perturbative one-loop power spectrum
and bispectrum

As a check-up for the consistency of our simulations at the largest scales,
we compare the output power spectrum with the perturbative matter
power spectrum at one-loop. Both methods should present the same
signal at large scales, while differences are expected at the quasi-linear
scales and smaller. The perturbative spectrum is given by

P (k, η) = PL + 2P (1,3)(k, η) + P (2,2)(k, η) , (3.16)

where PL corresponds to the linear contribution and P (1,3), P (2,2) are the
one-loop corrections with contributions of the perturbative second and
third order respectively. These can be written as

P (2,2)(k, η) = 2

∫
d3q

(2π)3
PL(q, η)PL(|k − q|, η)[F (2)(q,k − q, η)]2 ,

(3.17)

P (1,3)(k, η) = 3F (1)(k)PL(k, η)

∫
d3q

(2π)3
PL(q, η)F

(3)(k, q,−q, η) .

(3.18)
where F (2) and F (3) are kernels with Newtonian and relativistic contri-
butions at second and third order in Fourier space in the Eulerian frame
[37], [42].

Additionally, the tree-level bispectrum is defined as

B(k1, k2, k3) = 2PL(k1, η)PL(k2, η)F
(2)(k1,k2) + (2 cyclic.) , (3.19)
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Figure 3.8 Power spectrum from one-loop (lines) and simula-
tions (dots) for relativistic (Rc) contributions, for relativistic plus
non-Gaussian contributions (Rc_ng), and Gaussian (i.e. linear;
G) initial conditions. The gray line shows a GRamses simulation
from [12]. The turquoise shaded area represents the variance of
a survey with an observable area of A = 14 000deg2 (DESI-like).

where density field kernel can de computed by:

F (s)
n (q1, ..., qn) =

1

n!

k · q1

q21
...
k · qn

q2n
(3.20)

3.3 Power spectrum and bispectrum com-
parison

We computed the power spectrum and bispectrum from each of the sim-
ulations described previously, with the aid of the Pylians (Python li-
braries for the analysis of numerical simulations) script [46]. In order
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to compare the three cases studied, namely the non-Gaussian relativis-
tic, the Gaussian relativistic, and the Gaussian Newtonian case. For
all cases, we used the same seed in such a way residuals are due to the
intrinsic differences between the models.
In Figure 3.8 we present the power spectrum at z = 1 for the L-PICOLA
output considering the kernel of Section 3.2 as initial conditions, and the
corresponding one-loop power spectrum from cosmological perturbation
theory. The 3 cases presented are, Rc: relativistic contributions with
fNL = 0 gNL = 0, Rc_ng: relativistic contributions with fNL = −4.2
gNL = −7000, and G: The reference Gaussian initial conditions. The
plotted scales are limited by the fundamental frequency (The box size )
ffun = 2π/Lenght, which in our specific case is ffun = 0.002 h/Mpc.

The shaded area in this figure represents the variance expected in
an DESI-like survey [3] for an observable area of A = 14 000deg2 (no
particular geometry is considered) computed with the Fisher Matrix from
equation (2.254).

We have included in Figures 3.9 and 3.10 the data from the full rela-
tivistic code GRamses [12]. The suppression observed for the amplitude
at low scales is due to the low resolution of that simulation, but we find
a good agreement for large scales with our power spectrum (within the
errors, and up to k = 0.07), where the dominant effect takes place.

In Figure 3.9 we compare the perturbative power spectrum at one-
loop, as well as our simulations against the no-wiggle power spectrum.
In the lower panel where we present the difference with respect to the
Gaussian simulations (green dots). On large scales we find an increment
up to 4% (2%) in the amplitude of the power spectrum in relativis-
tic simulations with (without) non-Gaussianity. At smaller scales, i.e.
k0.1 h Mpc−1, find that the discrepancy with the Gaussian simulation
vanishes, and recover the well-known divergence of the one-loop pertur-
bative estimation (shown, for example, in Refs. [47], [48]).
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In order to ease the small-scale differences, we have included the
counterterm c2s of effective field theory (see e.g. [49]) to match the
perturbative power spectrum with the numerical (Gaussian) simulations
and make it consistent, specially for the small scales. We adopt the

Figure 3.9 Top panel: Power spectrum from one-loop (lines) and
simulations (dots) normalized to the no-wiggle power spectrum.
Initial conditions are set to Gaussian (G) or including relativistic
contributions with (Rc_ng) and without (Rc) primordial non-
Gaussianity. The gray line is a GRamses simulation from [12].
The turquoise shade is the same as in Fig. 3.8. The pink line rep-
resents a one-loop perturbative powerspectrum corrected through
a counter-term addition. Bottom panel: the percentage difference
between relativistic and Gaussian cases.
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counterterm contribution to the power spectrum at lowest-order from
EFT (Effective field theory), defined as:

Pctr,1loop ≡ −2k2c2sP11. (3.21)

As is usual, the counterterm coefficient was calculated after subtract-
ing the one-loop power spectrum from the mean power spectrum from the
simulations [50]. The resulting value shown in Figure 3.9 is c2s = 12.4.
With the one-loop power spectrum corrected in this manner we find
that the differences with simulations are below 2 percent throughout the
range of scales of Figure 3.9, and that simulations correctly reproduce
the one-loop effect of relativistic and non-Gaussianity contributions at
large scales.
With the power spectrum in good agreement with the theoretical predic-
tion and fully relativistic simulations, we explore the effects of our model
in the bispectrum. For local non-Gaussianities and at leading order in
relativistic effects, we find that the amplitude of the bispectrum is most
prominent in the squeezed configuration [51]. In Figure 3.10 we present
the bispectrum as a function of scale, for triangles with sides k1 = k2 = k

and k3 = 0.013k. Also, the shaded area around the tree-level bispectrum
in this figure represents the variance expected in an DESI-like survey [3]
for an observable area of A = 14 000deg2 (no particular geometry is
considered) [52]. The lower panel of that figure shows the relative differ-
ence with respect to the Gaussian simulations (green dots). We observe
that the difference increases with the size of the triangle. The percent-
age deviations from the Gaussian amplitude are of order 10% (8%), for
the relativistic initial conditions with (without) non-Gaussianity. Note
that at small scales, the PNG contribution vanishes, with a feature at
small scales also reported in the literature (see e.g. [53]). Once again,
for k0.08 hMpc−1 the perturbative analysis is divergent from the results
of simulations.
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Figure 3.10 Bispectrum sensitivity to GR and PNG ef-
fects. Top panel: Bispectrum computed at tree-level in relativis-
tic perturbations (red line, Eq. (3.19)), and from numerical sim-
ulations (averaged over 10 realizations) of Gaussian (green dots),
relativistic ICs (Orange dots) and the relativistic non-Gaussian
(blue dots) cases, at z = 1, the blue shadow is the variance from
a DESI-like survey. Bottom panel: the percentage difference of
the bispectrum for relativistic initial conditions simulations with
respect to the Gaussian case. ; Rcng is for relativistic corrections
and non-Gaussianity, Rc for just relativistic corrections.

In Figure 3.11 we show the reduced bispectrum defined as:

Q =
B(k1, k2, k3)

P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)
, (3.22)
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The bottom panel of that figure shows the difference of the studied cases
with respect to the Gaussian ICs. We can see that the difference is most
prominent at squeezed configurations (low values of the aperture angle
θ), which is the reason behind the choice of triangle shape in the plots
of Figure 3.10.

Figure 3.11 Reduced bispectrum sensitivity to GR and
PNG effects. Top panel: reduced bispectrum (Eq. (3.22)) for
the mean of the 10 realizations of Gaussian simulations (QG) and
non-Gaussian simulations (QR and QN) at z = 1 with k1 = k2 =

0.01. Bottom Panel: Difference of the reduced bispectrum for
non-Gaussian and relativistic IC simulations with respect to the
Gaussian ones.
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3.3.1 Voids

The cosmic voids are very low density zones in the universe where the
matter is so sparse that the gravitational interaction is almost null. This
can help to have a clear detection of the perturbations of the early uni-
verse (PNG). We computed the void power spectrum of the voids using
PYLIANS code as shown in Figure 3.12 We can observe that the de-

Figure 3.12 Power spectrum of the voids for Gaussian, PNG
and PNG with relativistic contributions.

viation for the PNG and PNG with relativistic contributions from the
Gaussian simulation is considerably higher than the one of the matter
power spectrum of Figure 3.8. This are promising preliminary results
because further studies are needed; such as the study of the sensitivity
of the void detection and analyze the void mass function that are beyond
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Figure 3.13 2PCF from the DESI Mock Challenge simulation
where the error bars are the diagonal from the covariance matrix
from RascalC.

the scope of this thesis.

3.4 Mock Challenge participation

We participated in the Mock Challenge Project of the DESI collaboration
in estimating covariance matrices and 2PCF using RascalC (Rapid Sam-
pler for Large Covariance Matrices). This package uses the formalism
presented previously programmed in C++. In this project we compared
this is in contrast with the method where several realizations are used. In
Figure (3.14) are the covariance matrices for different methods, C corre-
sponds to a conventional method where several realizations were used to
compute the covariance matrix, and M corresponds to the computation
with RascalC where just one realization was used. It can be seen that
there are no compromising differences.

In Figure 3.13 is the 2PCF with the error bars from the diagonal of the
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Figure 3.14 Covariance matrix with 2 different method from the
DESI Mock Challenge.

covariance matrix. We concluded that the approximation via RascalC
method, requires less computational resources and only one realization
without loosing much accuracy [4].

88



Chapter Four

Conclusions and future
work
The cosmological simulations have been an important tool to analyze
different model varying the cosmological ingredients. In this work we
produced L-PICOLA simulations with an input from purely relativistic
contributions, as well as from primordial non-Gaussianity, introduced
through a modification to the initial conditions provided by the 2LPTic
code. The input is given in terms of the gravitational potential kernel,
which for our work takes corrections at 1-loop including the relativistic
terms and primordial non-Gaussianities from fNL and gNL on the local
configuration. Using the limit values of the PNG parameters, as im-
posed by Planck satellite observations [54], we find higher percentage
deviation from the Gaussian case in the bispectrum (as shown in Fig-
ures 3.10 and 3.11) than for the power spectrum (Figure 3.9). Similar
differences are obtained when considering exclusively relativistic contri-
butions without primordial non-Gaussianity. The most significant devi-
ations from the Gaussian case were detected at larges scales (k < 0.05),
and for the squeezed triangle configurations, as expected.

The consistency of the numerical simulations with the 1-loop ana-
lytic corrections, and with fully relativistic simulations, in the matter
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power spectrum, allow us to extend the analysis of a relativistic and
non-Gaussian signal to smaller scales. The presented technique can,
of course, be used to include non-Gaussianities in other configurations
(e.g. equilateral), via the 2LPTic prescriptions. We thus have at hand
a practical tool to incorporate both the relativistic contributions as well
as the correct (gauge-invariant) input from Primordial non-Gaussianity
in the initial conditions of codes like L-PICOLA and GADGET-2, as
well as other Nbody codes (e.g. [38], [55]), and even hydrodynamical
codes (e.g. [39]), in order to capture the effects in the large scale struc-
ture observables. The modifications are public in a GitHub repository
in https://github.com/miguelevargas/lpicola_mod and is available upon
request.

While the above results remain within the variance error of the present
galaxy surveys, a more refined error analysis can be employed in order to
have a better control of errors for the power spectrum and bispectrum.
For example, one can use simulations with inverted phases and look at
the relation of the power spectrum and its statistical properties with the
covariance matrix [56].

Regarding the contribution in the DESI Mock Challenge project, the
method of [52], has shown a good agreement with the usual covariance
matrix computation in less time with less realizations. This is an impor-
tant improvement for the new era of precision cosmology where simula-
tions of high resolutions are needed and conventional statistical methods
are not sufficient to process big data amounts in a reasonable time.

We explained also how not all the amplitudes in power spectrum may
be due physical effects, there are several numerical effects that have to
be analyzed before to make a physical interpretation. Specifically in this
work, the small scales were the more affected due the numerical methods
that are used in the code, similar studies may be done for adaptive-mesh
codes, for example Gadget-2.
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4.1 Future research

There are a variety of applications and future possible work derived from
this Thesis. After several realizations, one can compute the covariance
matrix of the relativistic and non-Gaussian matter spectrum, and observe
the scale and amplitude of mode-mixing [57]–[59] to quantify the impact
in the correlation between scales.

On the other hand, through a galaxy occupation method (such as
HOD [60]), one can probe the galaxy bias parameters which modulate the
contribution of the relativistic and PNG terms in the powers spectrum
(see e.g. [61]–[63]) and forecast constraints to PNG parameters from the
resulting polyspectra (see e.g. [64]).

Similarly, one can study how these contributions change the evolution
inside the voids; because of the low density inside of them, primordial
effects can be maintained more prominently than in zones with high mat-
ter density, where the non-linearities of matter due evolution as minimal.
This may be analyzed in the power spectrum and bispectrum (see e.g.
[65], [66]).

Also, having more computational resources, there may be full-GR
simulations with the PNG initial conditions with codes such as GEVO-
LUTION and GRAMSES. All these tasks and improvements may be
studied in future works.
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