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ABSTRACT 

A model which represents a physical process is usually composed by conservation 
equations, transfer mechanisms, and closure equations. These equations vary in the 
degree of certainty. This paper describes the incorporation of physical and empirical 
models. The empirical part is constructed by Deep Learning. This work describes the 
principles which have promoted Deep Learning as a complementary tool for the 
approximation of process engineering when is used for model-based control. In addition 
of the stability and accuracy to deal with unmeasured disturbances, a robust strategy is 
to use Reinforcement Learning thus the principles of this strategy are also described. 
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por Refuerzo. 

Un modelo que representa un proceso físico suele estar compuesto por ecuaciones de 
conservación, mecanismos de transferencia y ecuaciones cerradas. Estas ecuaciones 
varían en el grado de certeza. Este artículo describe la incorporación de modelos físicos 
y empíricos. La parte empírica está construida por Aprendizaje Profundo. Este trabajo 
describe los principios que han impulsado al Aprendizaje Profundo como herramienta 
complementaria para la aproximación de la ingeniería de procesos cuando se utiliza para 
el control basado en modelos. Además de la estabilidad y precisión para hacer frente a 
perturbaciones no medidas, una estrategia robusta es utilizar el Aprendizaje por 
Refuerzo. Por lo tanto, también se describen los principios de esta estrategia. 
. 
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1 Introduction 

In this paper an incursion to deep learning and 

reinforcement learning for processes regulation is 

presented. In section 2 some nonlinear objective 

functions used in deep neural network are 

introduced. In section 3 the gradient method is 

presented as a solution method of the objective 

function. A test of deep learning approximation is 

presented in section 4. In section 5, applications to 

heating processes is presented, and conclusions are 

presented in section 6. In this section, we first 

review the main ideas that lead to deep learning by 

means of a brief history; then, we present the basic 

definitions and concepts of reinforcement learning 

with the aim to only state the fundamentals for 

processes regulation.  

 

1.1 A brief review of the history of deep 

learning 

There have been many contributions to the field of 

neural network that lead to what we know as deep 

learning algorithms. However, we present next the 

most remarkable ideas, which start with the work 

of Mcculloch and Pitts in 1943 and stop with the 

work of Hinton et al in 2006 [1 – 7].  

W. MCCULLOCH AND W. PITTS [1] in1943 

introduced the first mathematical model of a 

neuron, in which a weighted sum of input signals is 

compared to a threshold to determine whether or 

not the neuron fires. It should be noted that the 

weight in this model were adjusted manually.  

F. ROSENBLATT [2, 6] in 1958 introduces the 

perceptron. The perceptron occupies a special 

place in the historical development of neural 

networks because of the stated hypothesis on the 

perceptron and because it was the first neural 

network to be described algorithmically. That is, 

this model could automatically learn the weights 

needed to classify an input, without human 

intervention.  

M. MINSKY AND S. PAPERT [3, 6] in 1969 

showed the first rigorous study dedicated to 

determining what a perceptron network is capable 

of learning. They predicted perceptron limitations, 

which diminish the research on neural networks.  

D. E. RUMELHART, G. E. HINTON, and R. J. 

WILLIAMS [4, 6] in 1986 presented a key 

influence in the resurgence of interest in the field 

of neural networks. They introduced the 

backpropagation algorithm for multilayer network 

training. That is, the back propagation of the error 

enabled us to add hidden layers obtaining, 

therefore, deep neural networks. The difficulty 

faced at this time was the lack of algorithms to 

solve the multilayer networks efficiently.  

G. E. HINTON, S. OSINDERO AND Y-W THE 

[5] in 2006 published a paper showing how to train 

efficiently a deep neural network. They called this 

technique "Deep Learning". They revived the 

interest of the scientific community. New works 

proved that deep learning was not only possible, 

but capable of spectacular achievements that no 

other Machine Learning technique could obtain. 

The key properties of deep learning methodology 

are its efficient algorithms, which have been 

enhanced by the current computational capacities. 

HINTON was contributing to the achievements of 

deep neural network around 1986 as it may be 

noticed in [4].  

 

1.2 A review of reinforcement learning  
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The reinforcement learning covers Markov process 

(MP), Markov process with rewards (MPR), 

Markov decision processes (MDP) and dynamic 

programming. Reinforcement learning have been 

widely used in modeling disciplines such as 

economics, control theory, and robotics. We first 

present the basic definitions and concepts of 

reinforcement learning, including the agent, 

environment, action, state, and the reward function. 

Then, we review the MDP together with MP and 

MRP because they are the cornerstones in 

formulating reinforcement learning tasks [7].  

 

1.2.1 Definitions and concepts of 

reinforcement learning 

The agent and environment are the basic 

components of reinforcement learning. An agent 

can “interact” with the environment by using a 

predefined action set 𝐴 = {𝐴1, 𝐴2, ⋯ }. The goal of 

reinforcement learning algorithms is to teach the 

agent how to interact with the environment, as it is 

shown in Figure 1.  

 

Fig. 1 Agent and environment 

 

At any time step 𝑡  the agent first observes the 

current state of the environment 𝑆𝑡  and the 

corresponding reward value 𝑅𝑡 . Then it decides 

what action to take next based on 𝑆𝑡 and 𝑅𝑡. The 

action 𝐴𝑡  the agent perform is fed into the 

environment giving the new state 𝑆𝑡+1 and reward 

𝑅𝑡+1 . If the observation of the environment only 

contains partial state information, the environment 

is partially observable, otherwise is fully 

observable. A trajectory 𝜏 is a sequence of states, 

actions, and rewards:  

𝜏 = (𝑆0, 𝐴0, 𝑅0, 𝑆0, 𝐴0, 𝑅0, ⋯ ) 

which records how the agent interacts with the 

environment. An episode is a trajectory that goes 

from an initial state to the terminal state.  

The transition from a state to the next state can be 

either deterministic or stochastic. For a 

deterministic transition, the next state 𝑆𝑡+1  is 

governed by a deterministic function: 𝑆𝑡+1 =

𝑓(𝑆𝑡 , 𝐴𝑡). For a stochastic transition, the next state 

𝑆𝑡+1 is described as a probabilistic distribution:  

𝑆𝑡+1 = 𝑝(𝑆𝑡+1|𝑆𝑡 , 𝐴𝑡) 

 

1.2.2 Fundamentals of reinforcement 

learning 

Markov Process 

A Markov process (MP) is a discrete stochastic 

process, which follows the assumption of Markov 

chain where the next state 𝑆𝑡+1 is only dependent 

on the current state 𝑆𝑡 of an environment, with the 

transition probability is described as follows:  

𝑝(𝑆𝑡+1|𝑆𝑡)

= 𝑝(𝑆𝑡+1|𝑆0, 𝑆1, 𝑆2, ⋯ , 𝑆𝑡) 

(1) 

A Markov chain is time-homogeneous Markov 

chain if it holds the following property 𝑝(𝑆𝑡+2 =

𝑠′|𝑆𝑡+1 = 𝑠) = 𝑝(𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠).  

 

Markov Reward Process 

An agent can interact with its environment via the 

state transition matrix 𝑃 = (𝑝𝑖𝑗). There is no way, 

however for MP to provide feedback from the 
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environment to the agent. To provide a feedback, 

Markov reward process (MRP) extends MP from 

(𝑆, 𝑃)  to (𝑆, 𝑃, 𝑅, 𝛾) . The 𝑅  and 𝛾  represent the 

reward function and reward discount factor, 

respectively. The reward function depends on the 

current state:  

𝑅𝑡 = 𝑅(𝑆𝑡) (2) 

A return is the cumulative reward of a trajectory 𝜏, 

which is defined as follows:  

𝑅(𝜏) = ∑ 𝑅𝑡

𝑇

𝑡=0

 

 

(3) 

The discounted return is a weighted sum of rewards 

of a 𝑇 − step trajectory for MRP, which is defined 

as follows:  

𝑅(𝜏) = ∑ 𝜏𝑡𝑅𝑡

𝑇

𝑡=0

 

 

(4) 

where a reward discount factor 𝛾𝜖[0, 1].  

 

Markov Decision Process 

MP can be defined as the tuple (𝑆, 𝑃), where the 

element of state transition matrix 𝑃  is 𝑝(𝑆𝑡+1 =

𝑠′|𝑆𝑡 = 𝑠) , and MRP is defined as the tuple 

(𝑆, 𝑃, 𝑅, 𝛾) . Here, MDP is defined as the tuple 

(𝑆, 𝐴, 𝑃, 𝑅, 𝛾) . An element of state transition 

matrix 𝑃 becomes:  

𝑝(𝑠′|𝑠, 𝑎) = 𝑝(𝑆𝑡+1 = 𝑠′|𝑆𝑡

= 𝑠, 𝐴𝑡

= 𝑎) 

(5) 

The set of actions is 𝐴 = {𝑎1, 𝑎2, . . . } . The 

immediate reward becomes:  

𝑅𝑡 = 𝑅(𝑆𝑡 , 𝐴𝑡) (6) 

A policy 𝜋(𝑎|𝑠) represents the way in which the 

agent behaves based on its observations of the state 

the environment:  

𝜋(𝑎|𝑠)

= 𝜋(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠), ∀𝑡 

(7) 

The probability of a 𝑇 − step trajectory for MDP is 

determined in terms of the initial state probability 

𝜌0 and the policy 𝜋 as follows:  

𝑝(𝜏|𝜋)

= 𝜌0(𝑆0) ∏ 𝑝(𝑆𝑡+1|𝑆𝑡 , 𝐴𝑡)

𝑇−1

𝑡=0

𝜋(𝐴𝑡|𝑆𝑡) 

 

(8) 

Now, given the reward function 𝑅 and all possible 

trajectories 𝜏, the expected return 𝐽(𝜋) is defined 

in terms of 𝑝(𝜏|𝜋) as follows:  

𝐽(𝜋) = ∑ 𝑝(𝜏|𝜋)𝑅(𝜏)

 

𝜏

 (9) 

The Reinforcement Learning optimization problem 

is to improve the policy 𝜋  for maximizing 𝐽(𝜋). 

The optimal policy 𝜋∗ is expressed as:  

𝜋∗ = 𝑎𝑟𝑔 max
𝜋

𝐽(𝜋) (10) 

Given π, the value function  𝑉(𝑠) , the expected 

return under the state, can be defined as:  

𝑉𝜋(𝑠) = 𝐸𝜏~𝜋(𝑅(𝜏)|𝑆0 = 𝑠) 

= 𝐸𝐴𝑡~𝜋(∙|𝑆𝑡) [∑ 𝛾𝑡𝑅(𝑆𝑡 , 𝐴𝑡)|𝑆0 = 𝑠

∞

𝑡=0

] 

 

(11) 

where 𝜏 ∼  𝜋 means the trajectories 𝜏 are sampled 

given the policy 𝜋 , 𝐴𝑡~𝜋(∙|𝑆𝑡) means the action 

under a state is sampled from the policy. The 

action-value function gives an expected return 

under a state and an action. If the agent acts 

according to a policy 𝜋, we denote it as 𝑄𝜋(𝑠, 𝑎), 

which is defined as:  



Programación Matemática y Software (2021) 13(2): 39-53. ISSN: 2007-3283 
 

 

43 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜏~𝜋(𝑅(𝜏)|𝑆0

= 𝑠, 𝐴0

= 𝑎) 

= 𝐸𝐴𝑡~𝜋(∙|𝑆𝑡) [∑ 𝛾𝑡𝑅(𝑆𝑡 , 𝐴𝑡)|𝑆0 = 𝑠, 𝐴0 = 𝑎

∞

𝑡=0

] 

 

(12) 

The estimation formulas of value functions 𝑉𝜋(𝑠) 

or 𝑄𝜋(𝑠, 𝑎)  can be simplified by leveraging the 

Markov property in MDP, which may be solved by 

dynamic programming.  

 

1.3 Dynamic programming 

Dynamic programming (DP) provides a general 

framework for a dynamic problem by breaking it 

down into sub-problems. There are two properties 

that a problem must have for DP to be applicable: 

optimal substructure and overlapping sub-

problems. A MDP with finite actions and states 

satisfy both properties. The Bellman equation gives 

the recursive decomposition of a MDP, and value 

functions provides the optimal solution of sub-

problems which can be reused. DP requires full 

knowledge of the environment, such as the reward 

model and the transition model, of which we often 

have limited knowledge in reinforcement learning. 

However, DP provides a framework for a 

reinforcement learning algorithm in such a manner 

that it may learn to interact with the MDP 

incrementally.  

 

2 Objective functions of Deep-Learning 

Bengio 2000 [8] defined as objectives of Deep-

Learning:  

1. General – To treat applications with variations 

much greater than the number of training examples.  

2. Flexible Scope – Ability to learn at low-level, 

intermediate and high level.  

3. Robust – To learn from large set of examples.  

4. Reusable – To learn across different tasks.  

5. Automatic – To learn the structure of the 

observed data.  

In the next sections, we shal discuss the progress 

toward these objectives.  

 

2.1 Approximation 

A linear polynomial approximation, with respect to 

the weight 𝑤, can be expressed as:  

𝑦(𝑥𝑖) = ∑ 𝑤𝑗𝜑𝑗(𝑥𝑖)

𝑚

𝑗=1

 

where 𝜑𝑗(𝑥𝑖)  represent basis, form or shape 

function, and 𝑤𝑗  are the weights.  

A common basis function used by Artificial Neural 

Networks (ANN) is 𝑡𝑎𝑛ℎ(𝑥),  

𝜑𝑗(𝑥𝑖) = 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒𝑥

𝑒𝑥 + 𝑒𝑥
,   − 1 ≤ 𝜑𝑗(𝑥𝑖)

≤ +1 

This basis function has the following properties  

1. Stable for the 𝑥𝑖 values in the range 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤

𝑥𝑚𝑎𝑥  

2. Good convergence as 𝑚 → ∞.  

3. Revertible 𝑥 = 𝜑−1(𝑥). During this process it is 

required that if there are multiple roots, then it 

should exist a criterium to select the appropriate 

root.  

4. Continuous in the derivatives 𝜕𝜑/𝜕𝑥.  

For efficient calculation, ANN uses an equivalent 

shape, but with a shifted value. The following 

combined form of weights 𝑤  and bias 𝑏  (cf. 

Goodfellow, 2016 [9]):  

𝜑(𝑥, 𝑤) =
1

1 + 𝑒𝑤𝑥+𝑏
,   0 ≤ 𝜑(𝑥, 𝑤) ≤ 1 
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2.2 Promotion of Deep-Learning 

Approximation 

Analysis of process phenomena presents a strong 

progress due to the availability of     

1. Large and accurate set of data.  

2. Inter-phases to interconnect different sensing 

devices.  

3. Computers with multiprocessing capability.  

4. Standard formats to exchange networks, 

ONNX.ai (Open Neural Network Exchange). 

As a result many phenomena can be approximated 

by: amplitude, frequency, phase, and 

synchronization with other phenomena.  

 

2.3 Approximation of Several variables 

To approximate several variables ANN uses the 

form:  

𝑦1 = 𝜑1(𝑥𝑇𝑤1 + 𝑏1) 

𝑦2 = 𝜑2(𝑥𝑇𝑤2 + 𝑏2) 

(13) 

(14) 

It is convenient to use scaled variables, in both 

dependent and independent variables:  

𝑥̂ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 

 

2.4 The objective function for 

approximation 

The objective function measures distance between 

the measurements and the approximation. For the 

Eucledian norm:  

𝐽𝑗(𝑤, 𝑥) = [𝑦𝑗,𝐴𝑝𝑥 − 𝑦𝑗,𝑀𝑒𝑎𝑠]
𝑇

[𝑦𝑗,𝐴𝑝𝑥

− 𝑦𝑗,𝑀𝑒𝑎𝑠] 

(15) 

For a general application, the optimization problem 

is [10]:  

min
𝑤

𝐽𝑗 ((𝑥𝑗 , 𝑤), 𝑦𝑖) (16) 

 

2.4.1 Scaling 

In general the value of the objective function has 

terms with different magnitude. Alternatives to 

scale this value are:   

1.  To apply the uncertainty of the measurements as 

a weighting value.  

2.  To apply the norm proposed by Shannon [11]. 

𝑥𝑙𝑜𝑔(𝑥) provides general scaling properties 

 

2.5 A Layer Deeper 

From the ANN basis  

𝜑(𝑥) =
1

1 + 𝑒𝑤𝑥+𝑏
 (17) 

A second layer can be constructed as:  

1

1 + 𝑒
𝑤0(

1
1+𝑒𝑤1𝑥+𝑤1

)+𝑏0

 

The advantage is that with this additional layer, the 

approximation error is smoother than the original 

function. 

 

3 Solution Methods of the Objective 

function 

3.1 General Algorithm 

A general algorithm for the solution of the 

nonlinear problem is the gradient method.  

1. Initialize weights 𝑤 = 𝑤0  

for 𝐼𝑡 = 1 : 𝐼𝑡𝑀𝐴𝑋  

2. Evaluate gradient of the objective 

function with respect of the weights, 

∇𝐽(𝑤). 
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3. Tune 𝛼, the step length, to promote 

descend direction 𝐽(𝑤𝐼𝑡+1) < 𝐽(𝑤𝐼𝑡) 

[12]. 

4. Update weights 𝑤𝐼𝑡+1 = 𝑤𝐼𝑡 +

𝛼∇𝐽(𝑤𝐼𝑡).  

5.  ( < )J   stop 

end  

6.  Return fitting parameters 𝑤.  

 

 

 

3.2 Gradient Evaluation Method 

The steepest descendant method is simple and 

reliable. But requires the partial derivatives. There 

are some possibilities to evaluate the gradient 

∇𝐽(𝑤).  

∇𝐽(𝑤) = {
𝐴𝑛𝑎𝑙𝑖𝑡𝑖𝑐𝑎𝑙
𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

} 

for a nonlinear approximation, the optimum values 

for fitting parameters 𝜃 are evaluated 𝑑𝐽/𝑑𝜃 = 0:  

𝑑𝐽

𝑑𝜃
= 𝑓(𝑥𝑖 , 𝜃)

𝑓(𝑥𝑖 , 𝜃)

𝑑𝜃
 (18) 

 

3.2.1 Example 

Consider a function 𝑓(∙)  of heat transfer of a 

separation of mixture into liquid and vapor of 

independent variables 𝐴, 𝑤1, 𝑇1, 𝑤2, 𝑇2, 𝑇𝑤 , 𝑇𝑎 , 𝐶3 

𝑓(𝐴, 𝑤1, 𝑇1, 𝑤2, 𝑇2, 𝑇𝑤 , 𝑇𝑎 , 𝐶3)

= 𝑤1
𝑖 ∙ ℎ1

𝑖 − 𝑤2
0 ∙ ℎ2

0

− 𝑤3
𝑣 ∙ ℎ3

𝑣 − 𝑄𝑇𝑟𝑛

− 𝑄𝐿𝑠𝑠 

(19) 

where 

𝑄𝑇𝑟𝑛 = 𝐴𝑈𝑇𝑟𝑛(𝑇𝑎𝑣𝑔 − 𝑇𝑤) 

𝑄𝐿𝑠𝑠 = 𝐴𝑈𝐿𝑠𝑠(𝑇2 − 𝑇𝑎) 

𝑇𝑎𝑣𝑔 =
1

2
(𝑇1 + 𝑇2) 

𝑄𝑇𝑟𝑛 Heat transfer 

𝑄𝐿𝑠𝑠 Energy losses to environment 

𝑈 Heat transfer coefficient 

ℎ𝑖 = ℎ(𝑇𝑖) 

Possible fitting parameters 𝜃 =

[𝑈𝑇𝑟𝑛, 𝑈𝐿𝑠𝑠 , 𝐴𝐿𝑠𝑠]  

Gradients: 

𝜕𝑓

𝜕𝑈𝑇𝑟𝑛

=
𝜕𝑄

𝜕𝑈𝑇𝑟𝑛

 

𝜕𝑓

𝜕𝑈𝐿𝑠𝑠

=
𝜕𝑄

𝜕𝑈𝐿𝑠𝑠

 

𝜕𝑓

𝜕𝐴𝐿𝑠𝑠

=
𝜕𝑄

𝜕𝐴𝐿𝑠𝑠

 

(20) 

 

(21) 

 

(22) 

Also 

𝜕𝑄𝑇𝑟𝑛

𝜕𝑈𝑇𝑟𝑛

= 𝐴(𝑇𝑎𝑣𝑔 − 𝑇𝑤) 

𝜕𝑄𝐿𝑠𝑠

𝜕𝑈𝐿𝑠𝑠

= 𝐴(𝑇2 − 𝑇𝑎) 

𝜕𝑄𝐿𝑠𝑠

𝜕𝐴𝐿𝑠𝑠

= 𝑈𝐿𝑠𝑠(𝑇2 − 𝑇𝑎) 

(23) 

 

(24) 

 

(25) 

Observations:    

 Equation (21) is based on conservation of 

energy, formulated around 1730.  

 This equation neglects the effects of 

pressure and volume.  

 The estimation of ℎ(𝑇, 𝐶)  requires 

calorimetric data of the mixture. Thus, 

this needs mixture data, while ℎ(𝑇) or a 

pure component can be accurately 

estimated.  

 In the laboratory 𝑄𝐿𝑠𝑠 can be reduced. At 
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industrial level this is an important 

component.  

 In general 𝑈𝑇𝑟𝑛  has a dependence on a) 

flow, b) fluid of every stream and c) form 

of the vessel, so this is a very specific 

correlation for the unit.  

 The effect of unmeasured variables, like 

humidity, which affects 𝑄𝐿𝑠𝑠  can be 

represented by a probability distribution 

[13].  

 The parameters 𝑈𝐿𝑠𝑠, 𝐴𝐿𝑠𝑠  might be 

difficult to evaluate separately.  

 The parameter 𝑈𝐿𝑠𝑠  depends also on 

environmental conditions, like humidity.  

Hernandez et al. (2009) [14] compared the 

approximation of a Neural Network Model with a 

model based in physical principles applied to a 

Thermodynamic cycle. They observed that the 

ANN are very appropriate to match the 

experimental results, even under heat loses and 

pressure drops in pipes. but it has a relatively 

narrow operation range.  

 

3.3 Numerical Derivative 

The numerical gradient can be approximated 

numerically as  

𝜕𝐽

𝜕𝑥
=

[𝐽(𝑥 + 𝛿𝑥) − 𝐽(𝑥 − 𝛿𝑥)]

2𝛿𝑥
 (26) 

𝛿𝑥 is a tuning parameter. Bug 𝛿𝑥 promotes large 

approximation errors, but to small 𝛿𝑥  leads to 

computer rounding errors. 

 

3.4 Automatic Differentiation 

To evaluate the partial derivatives of a general 

expression, automatic differentiation follows the 

trajectory of execution from the input values, 

terms, subexpresion, branches to arrive to the final 

output values. see Grienwank;1991 [15]. The 

derivatives can be obtained by the algebra of 

differentiation: 

𝑓(𝑥): 
𝑑𝑓

𝑑𝑥
 

𝑎𝑓1 + 𝑏𝑓2: 𝑎
𝜕𝑓1

𝜕𝑥
+ 𝑏

𝜕𝑓2

𝜕𝑥
 

𝑓1 ∙ 𝑓2: 𝑓2

𝜕𝑓1

𝜕𝑥
+ 𝑓1

𝜕𝑓2

𝜕𝑥
 

𝑓(𝑔(𝑥)): 
𝜕𝑓

𝜕𝑔

𝜕𝑔

𝜕𝑥
 

tanh(𝑥) : sec 1(𝑥) 

max
 

(0, 𝑓(𝑛)):  {
𝑑𝑓

𝑑𝑥
𝑖𝑓 𝑓(𝑥) > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(27) 

 

(28) 

 

(29 

 

(30) 

(31) 

 

(32) 

The advantage of evaluating subexpressions with 

the computational graph, is that the evaluation 

follows the branches, cycles and also procedures of 

the computations. The computational graph can be 

used in two senses:  

 Forward-mode To obtain derived 

properties, like occurrence matrix [16], or 

partial derivatives.  

 Reverse-mode To approximate the values 

of inputs which produce a required output.  

This is provided directly by languages which 

provide operator overloading . The Julia 

programming language provides Automatic 

Differentiation by the package Zygote (cf Innes; 

2019) [17]. 
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3.5 Hessian Evaluation Method 

To improve convergence Method Martens (2010) 

[18], used the Hessian. Hessian can be evaluated 

also numerically, analytically, or by geometrical 

approximation, known as derivative approximation 

[19]. 

 

4 Testing 

The development of the multistage switching 

network BBN for share memory computers 

provides a general scheme to interconnect the input 

variables with the output variables, in such a way 

that by switching, the relevant variables can be 

detected [20] (Fig 2.)1.  

   

Figure 2: BBN interconnecting Network  

Then with a systematic selection of variables it is 

possible to detect which independent variables 

affect more the objective function [21]. 

                                                           
1 Authors are grateful for the provision of this drawing by Prof. 

L. Scott  

𝑆𝑖𝑗 =
𝜕𝐽𝑖

𝜕𝑥𝑗

 (33) 

 

4.1 Validation 

What is the adequate level of optimization? 

To improve the quality of the solution, it is 

possible: a) To filter the data points (see Niesser; 

2020) [22], o b) To apply additional criteria, like:  

1.  Physical bounds of the parameters 𝑤𝑚𝑖𝑛 ≤ 𝑤 ≤

𝑤𝑚𝑎𝑥    

2.  Sensitivities 
𝜕𝑦𝐴𝑝𝑥,𝑖

𝜕𝑥𝑘
 𝑣𝑠 

𝜕𝑦𝐸𝑥𝑝,𝑖

𝜕𝑥𝑘
  

3.  Value of Equilibrium conditions 𝑆𝑖,𝑗
∗ = 𝑆𝑖,𝑙

∗  at 

𝑥 = 𝑥𝑙
∗ (cf. Yuan and Herold; 2005) [23] 

4.  Values of Derivative at a given condition 
𝜕𝑦

𝜕𝑥
 at 

𝑥 = 𝑥 
#   

 

4.2 Overfitting 

The Weierstrass approximation theorem indicates 

that for a given sequence of experimental values, it 

is possible to construct an approximation, such that 

‖𝜕𝑦𝐴𝑝𝑥 − 𝜕𝑦𝐸𝑥𝑝‖ ≤ 𝜖, but the limit might not be 

defined by 𝜖  but by the uncertainty of the 

measuring instruments. In this case a limit in the 

complexity of the approximation is necessary.  

 

4.3 Regularization 

In some experiments, exists several conditions at 

which the objective function has similar values. In 

this case a secondary criteria can be selected the 

optimum values of 𝑤 . Then for a quadratic 

objective function 
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min
𝑤

[𝐽(𝑤, 𝑥) + ∑ 𝑅𝑙𝐷(𝑤

𝑙=𝑁𝑊

𝑙=1

− 𝑤𝑙,𝑅𝑒𝑓)
2

] 

 

(34) 

Where 𝑅𝑙 > 0  is a penalty parameter for 

regularization, 𝐷 is a diagonal matrix, and 𝑤𝑙,𝑅𝑒𝑓 is 

a reference value of 𝑤𝑗 .  

 

5 Applications to heating processes 

 The versatility of the approximation provides 

application in wide areas [24] 

1.  Text analysis  

2.  Image processing  

3.  Sound Processing  

4.  Pattern Recognition [26] 

Also some practical applications which combine 

these capabilities.   

1.  Text analysis + sound processing to 

reduce noise in a conversation.  

2.  Image processing + sound processing 

to provide automobile maintenance.  

Other important area is the estimation of 

thermodynamic properties (cf. Zu and Müller; 

2020 [25], Yuan and Herold [23] for an 

approximation of a single potential which is used 

to evaluate consistently other properties), which 

can take more than 50% of the evaluation of a 

chemical process.  

 

 

 

5.1 Process Control 

Consider the dynamic form of, to represent the 

heating process:  

𝑑ℎ

𝑑𝑡
=

𝑓(𝐴, 𝑤1 , 𝑇1, 𝑤2, 𝑇2, 𝑇𝑤 , 𝑇𝑎 , 𝐶3)

𝑀

=
𝑤1

𝑖 ∙ ℎ1
𝑖 − 𝑤2

0 ∙ ℎ2
0 − 𝑤3

𝑣 ∙ ℎ3
𝑣 − 𝑄𝑇𝑟𝑛 − 𝑄𝐿𝑠𝑠

𝑀
 

𝑀 is the mass holdup. 

If the model is accurate, then, by integration during 

a fixed time interval ∆𝑡, it is possible that for a 

given profile of inputs during time, then it is 

possible to predict the profile of measured 

variables 𝑦𝑡0
, ⋯ , 𝑦𝑡𝑚

.  

𝑦𝑡𝑘+1
= Φ(𝑡𝑘+1, 𝑡𝑘)𝑦(𝑡𝑘) + Γ(𝑡𝑘+1, 𝑡𝑘)𝑢(𝑡𝑘) 

where: 

𝑘 Sampling index 

𝑢 Manipulated variable 

𝜈 Unmeasured disturbances 

𝑦 Measured variable 

𝜃 Model parameters 

Since, a suitable control consist in following a 

specified reference, 𝑟𝑡 see Table 1,  

Ti

me 

Manipul

ated 

variable 

Disturba

nces 

Measu

red 

Refere

nce 

𝑡0 𝑢0 𝜈(𝑡0) 𝑦0 𝑟0 

𝑡1 𝑢1 𝜈(𝑡1) 𝑦1 𝑟1 

𝑡2 𝑢2 𝜈(𝑡2) 𝑦2 𝑟2 

⋮ ⋮ ⋮ ⋮ ⋮ 

Table  1: Tabular performance of process variables 

over time  

a suitable control strategy must reduce 

accumulated error over a specified predicting 

horizon, 𝑚, with respect the manipulated variables 

𝑢𝑘 

min
𝑢𝑘⋯𝑢𝑚

[∑(𝑦𝑘 − 𝑟𝑘)𝑇(𝑦𝑘 − 𝑟𝑘)

𝑖=𝑚

𝑖=1

] 

 

(35) 
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With solution of this least square problem [27] is 

evaluated the manipulated variables for a 

predicting horizon 𝑚 . The ability of agile 

construction of a model is quite convenient in 

Model Based Predictive control. 

The industrial intelligence must be (cf. Qin, 

IFAC2020 [28]): a) Work with known first 

principles. To satisfy the basic continuation 

equations. b) Predictive: Some steps ahead. b) 

Interpretable to describe the rationale for the 

expected outcome. 

A complementary part of model construction for 

control, is to apply reinforcement learning (Tran et 

al.??  2019 [29]) and discussed in section 1, which 

includes:  

1. Agent, 

2. Environment, 

3. States of the environment,  

4. Transition Function (Deep-Learning).  

5. Actions of the agentt on the environment,  

6. Reward provided by the environment  

The goal of reinforcement learning is to maximize 

rewards. The transition from the previous state to 

the next state depends on actions from the agent.  

 

6 Conclusions 

Deep-Learning offers a hierarchical representation 

of multivariable phenomena. Deep-Learning 

ensembles a set of general algorithms for 

approximation. The applied methodology is to 

classify, to select the reliable data with a recurrent 

stable basis function. Automatic Differentiation 

allows approximation with two or more layers.  

 

6.1 Environments 

 Some alternatives environments are ( in 

alphabetical order):   

    1.  DeepLearning toolbox, by 

Mathworks [24].  

    2.  Flux. Julia programming language, 

?.  

    3.  Tensorflow by Google.  

 

6.2 Tutorials  

    • Goodfellow, Bengio and A. Courville 

(2016) [9];  

    • Mathwoks Academy. Deep Learning.  

    • Online tutorial of TensorFlow  

    • Online tutorial of Deep-Learning a 

M.I.T  

    • Hagan, Demuth, Beale, DeJesus: 

hagan.okstate.edu/nnd.html.  

6.3 Nomenclature 

ANN = Artificial Neural 

Network. 

BBN = R. Bolt, L. Beranek, R. 

Newman switching-array.  

Latins:  

𝐷 Diagonal matrix 

𝑔() Neural Network function 

𝐽 Objective function 

𝑥 Independent variable. 

𝑤 Weights of the approximation 

𝑅  Regularization parameter and 

rewards  

Greeks:  

𝜑 Basis or form function 

𝜏  Tolerance value and a 

trajectory in MDPs 
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𝛼 Step length value 

Subindex:  

𝐴𝑝𝑥 Approximation 

𝐸𝑥𝑝 Experimental 

𝑖 Index of function 

𝑗 Index of independent variable. 

𝑅𝑒𝑓 Reference value 

𝑆 Sensitivity and state in MDPs 

𝑚𝑖𝑛 Minimum 

𝑚𝑎𝑥 Maximum 

Superindex:  

*  Equilibrium condition 

#  Specific values 

𝐼𝑡 Iteration index 
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