

Universidad Autónoma del Estado de Morelos Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de investigación en dinámica celular

"Efecto del sesgo del contenido de GC genómico de organismos procariotas en las estructuras secundarias de sus proteínas"

## **TESIS**

QUE PARA OBTENER EL GRADO DE

**DOCTOR EN CIENCIAS** 

PRESENTA

## DIANA BARCELÓ ANTEMATE

DIRECTOR DE TESIS Dr. Enrique Merino Pérez

CUERNAVACA, MORELOS

MARZO, 2023



Universidad Autónoma del Estado de Morelos Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de investigación en dinámica celular

"Efecto del sesgo del contenido de GC genómico de organismos procariotas en las estructuras secundarias de sus proteínas"

## **TESIS**

QUE PARA OBTENER EL GRADO DE

**DOCTOR EN CIENCIAS** 

PRESENTA

## DIANA BARCELÓ ANTEMATE

DIRECTOR DE TESIS Dr. Enrique Merino Pérez

## **LISTA DE JURADO**

|                      | Nombre<br>(completo)                            | Adscripción        | Línea de investigación                                                              | Correo<br>Electrónico      |  |
|----------------------|-------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|----------------------------|--|
| DIRECTOR<br>DE TESIS | Dr. Enrique<br>Merino Pérez                     | IBT - UNAM         | Bioinformática<br>aplicada a las<br>ciencias ómicas                                 | enrique.merino@ibt.unam.mx |  |
| PRESIDENTE           | Dra. Carmen<br>Nina Pastor<br>Colón             | CIDC - UAEM        | Estructura y<br>Función de<br>Macromoléculas                                        | nina@uaem.mx               |  |
| SECRETARIO           | O Dra. María del<br>Rayo Sánchez<br>Carbente    |                    | Biotecnología de plantas y microorganismos                                          | maria.sanchez@uaem.mx      |  |
| VOCAL                | Dr. Ramón Antonio González García-Conde         |                    | Dinámica celular                                                                    | rgonzalez@uaem.mx          |  |
| VOCAL                | Dra. Cinthia<br>Ernestina<br>Núñez López        | IBT - UNAM         | Microbiología<br>molecular e<br>industrial para la<br>producción de<br>biopolímeros | cinthia.nunez@ibt.unam.mx  |  |
| VOCAL                | Dra. Verónica<br>Mercedes<br>Narváez<br>Padilla | CIDC - UAEM        | Estructura y<br>Función de<br>Macromoléculas                                        | vnarvaez@uaem.mx           |  |
| SUPLENTE             | Dra. Rosa<br>María<br>Gutiérrez Ríos            | IBT - UNAM<br>UNAM | Bioinformática<br>de procesos de<br>regulación en<br>bacterias                      | rosa.gutierrez@ibt.unam.mx |  |
| SUPLENTE             | Dr. Armando<br>Hernández<br>Mendoza             | CIDC - UAEM        | Estructura y<br>Función de<br>Macromoléculas                                        | ahm@uaem.mx                |  |

### LISTA DE PUBLICACIONES RELACIONADAS CON LA TESIS

Sueoka N. Correlation between Base Composition of Deoxyribonucleic Acid and Amino Acid Composition of Protein. *PROC N A S.* 1961;47:1141-1129.

Chou PY, Fasman GD. Prediction of Protein Conformation. *Biochemistry*. 1974;13(2):222-245. doi:10.1021/bi00699a002.

Chou PY, Fasman GD. Conformational parameters for amino acids in helical, Beta-sheet, and random coil region calculated from proteins. *Biochemetry*. 1974;13(2):211-222.

Singer GAC, Hickey DA. Nucleotide Bias Causes a Genomewide Bias in the Amino Acid Composition of Proteins. *Mol Biol Evol.* 2000;17(11):1581-1588.

Lightfield J, Fram NR, Ely B. Across bacterial phyla, distantly-related genomes with similar genomic GC content have similar patterns of amino acid usage. *PLoS One*. 2011;6(3). doi:10.1371/journal.pone.0017677.

Almpanis A, Swain M, Gatherer D, McEwan N. Correlation between bacterial G+C content, genome size and the G+C content of associated plasmids and bacteriophages. *Microb genomics*. 2018;4(4):e000168. doi:10.1099/mgen.0.000168.

### **AGRADECIMIENTOS**

Agradezco a mi increíble director de tesis, el Dr. Enrique Merino Pérez, a quien admiro y estimo, por su guía, su tiempo (aún en fines de semana), sus enseñanzas, por su calidez humana, su paciencia y ánimos en cada etapa de mi Doctorado, porque no se me olvida la confianza que tuvo en mí antes de empezar el posgrado. ¡Sin duda un digno ejemplo a seguir!

Al Dr. Ramón González García-Conde por sus preguntas en cada tutorial, por sus valiosas sugerencias, por la rapidez en la que contesta los correos y la flexibilidad de apoyo en muchas cuestiones académicas. Valoro el tiempo que me ha compartido, sus conocimientos y admiro al investigador de talla completa que es.

A la Dra. Sonia Dávila Ramos por toda su amabilidad y profesionalismo, por las importantes recomendaciones en mi trayectoria académica. A quien agradezco mucho su tiempo e intervenciones tan puntuales y acertadas. Por ser una investigadora joven que me motiva, me inspira y que también admiro mucho.

A la Dra. Rosa María Gutiérrez Ríos por sus valiosos y acertados comentarios en cada seminario de grupo, por su apoyo en la revisión de estilo del artículo científico, por ser una investigadora a la cual admiro muchísimo.

A la M. en C. María Luisa Tabche por su apoyo al conseguir reactivos, por las enseñanzas en el uso de equipos y técnicas de laboratorio, por la fuerza que proyecta como mujer, por su calidez de "mamá" en el laboratorio, por su sinceridad y buenos consejos, por ser alguien confiable.

A Ricardo Ciria por sus comentarios ortográficos, por la buena disposición en enseñarnos y explicarnos las herramientas bioinformáticas y por la amabilidad en la que me recibió al llegar al laboratorio. Gracias por todo y por el termo rosa.

A mis mejores amigas, Nataly Morales Galeana y Nori Castañeda Gómez, por hacer muy divertida mi llegada y estancia en el laboratorio. Por sus aportaciones intelectuales, por su comprensión, por el tiempo que han tenido conmigo, por las aventuras y por la amistad tan bonita que hemos formado.

A todos los del laboratorio, Mariela Serrano, Maricela Carrera, Raúl Noguez, MariCarmen Sanchéz, Jannette Huerta, Brandon, Lizzeth Soto, que de alguna u otra forma han aportado perspectiva con diferentes puntos de vista, por la buena disposición que les caracteriza y por los momentos que nos han unido como buenos hermanitos de laboratorio.

Al personal de la UAEM, especialmente al Posgrado en Ciencias, a las secretarias Dulce Verónica y Cris Aranda, así como a Esmeralda González, quienes me han apoyado y orientado de la manera más amable posible en todos estos años del Doctorado.

A mis amigas de ayer y siempre, Yormery y Annely que aún en la distancia me dan ánimos se seguir y no rendirme en el camino de la investigación.

Este trabajo se desarrolló en el departamento de Microbiología molecular del Instituto de Biotecnología-UNAM, bajo la dirección del Dr Enrique Merino Pérez. Así mismo, como estudiante del Posgrado en Ciencias de la Universidad Autónoma del Estado de Morelos (UAEM), agradezco el apoyo económico al Consejo Nacional de Ciencia y Tecnología (CONACYT) por la beca con número de CVU 563693.

## **DEDICATORIA**

Al amor de mi vida, mi esposo Fernando Fontove Herrera, por todo lo que eres y lo que me ofreces, quien no sólo me ha apoyado sentimentalmente, sino también psicológica y académicamente... ¡Me llena de satisfacción intelectual saber que vamos a publicar juntos un artículo científico!

Con mucho amor, tu esposa.

A mis padres, Lorenzo Barceló Aguilar y Josefa Antemate Chigo, por el invaluable apoyo que me han brindado en este camino de la investigación, sus ánimos, sus consejos en momentos difíciles o no tan claros.

Con amor, la más pequeña de sus hijas.

A mis hermanas, ¡simplemente gracias! Las amo a los dos con su característica forma de ser de cada una. Las llevo siempre en mi corazón.

## **ÍNDICE GENERAL**

| RESU         | JMEN                                                                                                   | . 13 |
|--------------|--------------------------------------------------------------------------------------------------------|------|
| ABST         | TRACT                                                                                                  | . 14 |
| 1. INT       | RODUCCIÓN                                                                                              | . 15 |
| 2. AN        | TECEDENTES                                                                                             | . 16 |
| 2.1<br>prote | Influencia del contenido de GC genómico en el uso de codones de los aminoácidos de eínas               |      |
| 2.2<br>estru | Estudios del sesgo del GC genómico en la frecuencia de aminoácidos de las proteínas a uctural primario |      |
| 2.3          | Relación del contenido de GC genómico y la longitud del genoma                                         | 20   |
| 2.4          | Propuestas para explicar las variaciones en el contenido de GC genómico                                | 20   |
| 2.5          | Las proteínas y su segundo nivel de organización estructural                                           | 22   |
| 2.6          | Aminoácidos formadores e interruptores de las estructuras secundarias de las proteínas                 | 23   |
| 3. JUS       | STIFICACIÓN                                                                                            | . 24 |
| 4. HIP       | PÓTESIS                                                                                                | . 25 |
| 5. OB        | JETIVOS                                                                                                | . 25 |
| 5.1          | OBJETIVO GENERAL                                                                                       | 25   |
| 5.2          | OBJETIVOS ESPECÍFICOS                                                                                  | 25   |
| 6 МД         | TERIAL ES Y MÉTODOS                                                                                    | 27   |

| 6.1    | Grupo de datos genómicos y proteómicos                                                    | 27     |
|--------|-------------------------------------------------------------------------------------------|--------|
| 6.2    | Clasificación taxonómica                                                                  | 27     |
| 6.3    | Evaluación del contenido de GC genómico                                                   | 28     |
| 6.4    | Clasificación de los aminoácidos de acuerdo con el contenido de GC de sus codones         | 28     |
| 6.5    | Evaluación de la frecuencia de aminoácidos en los proteomas                               | 29     |
| 6.6    | Predicción de las estructuras secundarias de las proteínas                                | 29     |
| 6.7    | Evaluación de la frecuencia de aminoácidos en las estructuras secundarias de los protes   | omas   |
| 6.8    | Análisis del efecto del sesgo del contenido de GC genómico en los parámetros conformacion | onales |
| de los | aminoácidos en la estructura secundaria de las proteínas                                  | 30     |
| 6.9    | Evaluación de las frecuencias de estructuras secundarias de los proteomas                 | 31     |
| 6.10   | Agrupación de proteínas en COGs                                                           | 32     |
| 6.11   | Selección de secuencias de proteínas representativas por COGs                             | 33     |
| 6.12   | Evaluación de las frecuencias de las estructuras secundarias de las proteínas COG         | 34     |
| 6.13   | Alineamientos múltiples de los elementos de estructura secundaria de proteínas ortólogas  | 34     |
| 6.14   | Lenguaje de programación usados                                                           | 35     |
| 7. RES | ULTADOS                                                                                   | 35     |

| 7.1            | Diversidad del contenido de GC genómico a través de filos procariotas               | 35          |
|----------------|-------------------------------------------------------------------------------------|-------------|
| 7.2            | El contenido de GC genómico impone un sesgo en la frecuencia de aminoácidos de      | el proteoma |
| y las          | estructuras secundarias de sus proteínas                                            | 37          |
| 7.3            | Análisis del efecto del sesgo del contenido de GC genómico en los parámetros confor | macionales  |
| de lo          | s aminoácidos en la estructura secundaria de proteínas                              | 41          |
| 7.4            | El contenido de GC genómico de organismos procariotas impone un sesgo en las        | frecuencias |
| de es          | structuras secundarias de los proteomas                                             | 43          |
| 7.5            | El contenido de GC de los genes impone un sesgo en las estructuras secundarias      | de algunas  |
| famil          | lias de proteínas ortólogas (COGs)                                                  | 45          |
| 8. COI         | NCLUSIONES                                                                          | 47          |
| 9. PEF         | RSPECTIVAS                                                                          | 49          |
| 10. AF         | PÉNDICE                                                                             | 51          |
| 11. M <i>A</i> | ATERIAL COMPLEMENTARIO                                                              | 52          |
| Tabl           | as Complementarias                                                                  | 52          |
| Figu           | ras Complementarias                                                                 | 59          |
| Anex           | хо                                                                                  | 77          |
| 12. BII        | BLIOGRAFÍA                                                                          | 78          |

## **ÍNDICE DE FIGURAS**

| Figura 1. Distribución del contenido de GC genómico de 192 procariotas de estudio. 37                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figura 2.</b> Efecto del sesgo del contenido de GC genómico sobre las frecuencias de los aminoácidos en el proteoma y las estructuras secundarias de proteínas |
| Figura 3. Efecto del contenido de GC genómico sobre los valores de los parámetros conformacionales de aminoácidos                                                 |
| <b>Figura 5.</b> Regresión lineal comparativa entre COGs, sin y con sesgo impuesto por el contenido de GC de sus respectivos genes                                |
| ÍNDICE DE TABLAS                                                                                                                                                  |
| Tabla 1. Clasificación de los aminoácidos del Código Genético con respecto al contenido         de GC de sus codones.       18                                    |

## ÍNDICE DE TABLAS COMPLEMENTARIAS

| genómico                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabla S2. Regresión lineal de 20 aminoácidos en el proteoma de 192 procariotas con respecto a su contenido de GC genómico                                                                                                                                                                         |
| Tabla S3. Regresión lineal de 20 aminoácidos en la estructura secundaria de 192         proteomas con respecto a su contenido de GC genómico.       57                                                                                                                                            |
| Tabla S4. Regresión lineal de los Parámetros Conformacionales de los aminoácidos a           partir de 192 proteomas con respecto a su contenido de GC genómico.         58                                                                                                                       |
| Tabla S5. Regresión lineal de las estructuras secundarias de 192 proteomas con respecto a su contenido de GC genómico.       58                                                                                                                                                                   |
| <b>Tabla S6.</b> Regresión lineal de las estructuras secundarias de las proteínas en el COG0002 y COG3228 con respecto al contenido de GC de sus genes. Los datos de m, b, R, R² y <i>p-value</i> para hélice alfa, hoja beta y lazo en COG0002 (sin sesgo) y COG3228 (con sesgo) son presentadas |
| ÍNDICE DE FIGURAS COMPLEMENTARIAS                                                                                                                                                                                                                                                                 |
| S1 Figura. Sesgo del contenido de GC genómico sobre las frecuencias de aminoácidos del proteoma y sobre las estructuras secundarias de las proteínas                                                                                                                                              |
| <b>S2 Figura.</b> Sesgo del contenido de GC genómico sobre los parámetros conformacionales (PC) de los aminoácidos por estructura secundaria de los proteomas                                                                                                                                     |
| <b>S3 Figura.</b> Alineamiento múltiple de los elementos de estructura secundaria de las proteínas del COG0002 con respecto al contenido de GC de sus genes                                                                                                                                       |
| <b>S4 Figura.</b> Alineamiento múltiple de los elementos de estructura secundaria de las proteínas del COG3228 con respecto al contenido de GC de sus genes                                                                                                                                       |

#### **RESUMEN**

Una de las principales características de los genomas procariotas es la proporción en que las bases Guanina-Citosina se utilizan en sus secuencias genómicas. Esto se conoce como el contenido de GC genómico y varía ampliamente, desde valores tan pequeños de 13% hasta valores tan grandes de 74%. Diversos estudios en microorganismos han demostrado que el contenido de GC genómico influye en la composición de aminoácidos de sus proteínas a nivel de su estructura primaria. Desde Sueoka<sup>1</sup>, se ha observado que el sesgo que impone el contenido de GC genómico es particularmente importante en la composición de aminoácidos codificados por codones altos y bajos en contenido de GC, como Ala, Gly y Pro, y como Lys, Asn e Ile, respectivamente. En nuestro estudio, ampliamos estos resultados considerando el efecto del contenido de GC genómico en las estructuras secundarias de las proteínas. El presente estudio se realizó a través de un análisis bioinformático cuyos resultados se presentan y discuten en cuatro partes. Primero, a partir de un primer grupo de 192 procariotas con contenido de GC genómico del 20% al 74% se observó la distribución filogenética, obteniendo características propias de cada filo estudiado. Segundo, con los genomas y proteomas del primer grupo de estudio, y basados en los parámetros conformacionales de Chou y Fasman<sup>2,3</sup>, encontramos que la tendencia de un aminoácido a formar parte de una estructura secundaria de proteínas no es absoluto, sino que varía según el contenido de GC genómico. Tercero, se identificó que la composición de las estructuras secundarias de los proteomas del primer grupo de estudio varía en relación con el contenido de GC genómico; esto es, a medida que aumenta el contenido genómico de GC los lazos aumentan, mientras que las hélices alfa y las hojas beta disminuyen. Cuarto, a partir de un segundo grupo de 1,544 procariotas se realizó un estudio donde se impusieron criterios estrictos de agrupación de proteínas ortólogas y descubrimos que, para algunos COGs el contenido de GC de los genes sesga la composición de las estructuras secundarias de las proteínas que codifican.

### **ABSTRACT**

One of the main characteristics of prokaryotic genomes is the ratio in which Guanine-Cytosine bases are used in their genomic sequences. This is known as the genomic GC content and varies widely, from values as small as 13% to values as large as 74%. Several studies in microorganisms have demonstrated that the genomic GC content influences the amino acid composition of their proteins at their primary structural level. Since Sueoka<sup>1</sup>, it has been observed that the bias imposed by genomic GC content is particularly important in the composition of amino acids encoded by codons high and low in GC, such as Ala, Gly, and Pro, and such as Lys, Asn, and Ile respectively. In our study, we extend these results by considering the effect of the genomic GC content on the secondary structure of proteins. The present study was conducted through a bioinformatics analysis whose results are presented and discussed in four parts. First, from the first group of 192 prokaryotes with a genomic GC content of 20 to 74%, the phylogenetic distribution was observed, obtaining characteristics of each phylum studied. Second, with the genomes and proteome of the first study group and based on studies of Chou and Fasman's conformational parameters<sup>2,3</sup>, we found that the tendency of an amino acid to form part of a secondary structure of proteins is not absolute but varies according to the genomic GC content. Third, it was identified that the composition of the secondary structures of the proteomes of the first study group varies in relation to the genomic GC content; that is, as the genomic GC content increases, coils increase, while alpha-helices and beta-sheets decrease. Four, from a second group of 1,544 prokaryotes, we did a study where were imposed strict criteria of orthologous protein clustering and we found that, for some COGs the GC content of genes biases the composition of secondary structures of the proteins for which they code.

## 1. INTRODUCCIÓN

El contenido de GC (composición de Guanina-Citosina) es un parámetro clave de la variación genómica en todos los organismos<sup>4</sup>. Es bien conocido que el contenido de GC genómico en procariotas varía marcadamente. Los estudios demuestran que la variación en el contenido de GC de los genomas de microorganismos actualmente secuenciados va del 13% al 75%, aproximadamente<sup>5,6</sup>.

Las causas de la gran diferencia en el contenido de GC genómico de procariotas aún no se conocen con certeza, pero se han correlacionado con el tamaño del genoma<sup>7,8</sup>, el estilo de vida (simbiontes o de vida libre)<sup>9,10</sup>, los hábitats ambientales (como ambientes extremos)<sup>11–13</sup>, las condiciones ambientales (como temperatura y pH,)<sup>4,14,15</sup>, la relación filogenética<sup>16</sup>, la presión mutacional<sup>17–19</sup>, entre otras variables.

Ha sido ampliamente documentado que la variación del contenido de GC genómico es uno de los principales contribuyentes de la arquitectura proteómica en un organismo<sup>1,12,20–23</sup>, ya que impacta directamente en los aminoácidos de sus proteínas a nivel estructural primario. Los aminoácidos principalmente afectados son aquellos codificados por codones altos y bajos en contenido de GC.

Un aspecto aun no considerado, y que es la base de este proyecto de investigación, es el estudio de la relación de la variación del contenido de GC genómico y la composición de las estructuras secundarias de las proteínas.

Los aminoácidos tienden a ser parte de los diferentes elementos de estructuras secundarias de las proteínas<sup>24,25</sup>. Esto ha sido determinado en base a la frecuencia con la que los aminoácidos están presentes en dichos elementos, siendo consistentes con sus propiedades fisicoquímicas y confiriendo estabilidad<sup>2,3,26</sup>. Dicha tendencia ha sido establecida con valores numéricos conocidos como parámetros conformacionales y pueden usarse para clasificar a los aminoácidos como formadores, indiferentes e interruptores de las estructuras secundarias de las proteínas<sup>2,3</sup>.

Nuestro estudio muestra por primera vez el impacto del contenido de GC genómico en las estructuras secundarias de las proteínas de organismos procariotas. Los resultados se presentan y discuten en diferentes niveles:

- Taxonómico, analizando la distribución del contenido de GC genómico en diferentes clados filogenéticos.
- Proteómico, evaluando el impacto del contenido de GC genómico sobre la tendencia de los aminoácidos a formar parte de los elementos de estructura secundaria de las proteínas (parámetros conformacionales);
- Proteómico, estimando el impacto del contenido de GC genómico sobre las frecuencias relativas de las estructuras secundarias de las proteínas;
- Evolutivo-funcional, analizando el efecto del contenido de GC de los genes ortólogos en las frecuencias relativas de las diferentes estructuras secundarias de las proteínas a las que codifican.

#### 2. ANTECEDENTES

Durante muchas décadas ha resultado atractivo conocer cómo la variación en el contenido de GC de los genomas de microorganismos impacta en las proteínas que conforman al proteoma. En el presente proyecto mencionaremos los principales trabajos que se han realizado en relación con el contenido de GC genómico y la composición de las proteínas a nivel estructural primario, los problemas que han resuelto, sus aportaciones, así como la relación que tiene con otras características biológicas.

Otro tema que también se abordará es la estructura secundaria de las proteínas, en la cual los aminoácidos forman a estos elementos. Detallaremos los principales trabajos que han sido referencia en la descripción de la preferencia de los aminoácidos a formar parte de los diferentes tipos de estructuras secundarias de las proteínas.

# 2.1 Influencia del contenido de GC genómico en el uso de codones de los aminoácidos de las proteínas

Debido a que el código genético es altamente degenerado<sup>27,28</sup>, 18 de los 20 aminoácidos son codificados por más de un codón. En consecuencia, hay aminoácidos como Ala, Gly Pro y Arg que son codificados por codones altos en GC, mientras que otros como Tyr, Lys, Ans e lle son codificados por codones altos en AT<sup>19–21</sup>.

Es bien sabido que no todos los codones y aminoácidos son igualmente utilizados por los organismos. Diversos estudios demuestran que existe una preferencia por el uso de codones que se correlaciona linealmente con el contenido de GC genómico a través de los filos y con el contenido relativo de aminoácidos de sus correspondientes proteomas<sup>13,16,29</sup>.

En relación a lo anterior, para determinar el impacto de la variación del contenido de GC genómico en el uso de codones de los aminoácidos<sup>30</sup>, se ha estudiado el contenido de GC de cada posición de los codones<sup>16,29</sup>. Estudios previos demuestran consistencia en el hecho de que GC de la tercera posición de un codón aminoacídico incrementa rápidamente con el incremento del contenido de GC genómico. Esto es que el GC de la tercera posición del codón cambia más rápido en comparación con el GC de la primera y segunda posición del codón y no depende directamente del aminoácido que codifica<sup>16,17,31</sup>.

# 2.2 Estudios del sesgo del GC genómico en la frecuencia de aminoácidos de las proteínas a nivel estructural primario

El genoma y su contenido de GC ha sido centro de atención para explicar la influencia directa sobre el contenido de aminoácidos de las proteínas (proteoma) de organismos representantes en los tres dominios de la vida: Bacteria, Arquea y Eucariota<sup>12</sup>. Ha sido ampliamente abordado que los aminoácidos con codones altos o bajos en GC son más sensibles a la variación del contenido de GC genómico<sup>1,16,20,22,31</sup>. La siguiente Tabla 1 clasifica a los 20 aminoácidos en tres grupos: con alto, neutro y bajo contenido de GC en sus codones.

Tabla 1. Clasificación de los aminoácidos del Código Genético con respecto al contenido de GC de sus codones. Los aminoácidos (referidos en código de tres letras), los codones y el contenido de GC de los codones son clasificados en tres grupos.

| Aminoácido             |     | Secuencia de codones |     |     |     |     | %GC |      |
|------------------------|-----|----------------------|-----|-----|-----|-----|-----|------|
|                        | lle | ATT                  | ATA | ATC |     |     |     | 11.1 |
| <u>.o</u>              | Asn | AAT                  | AAC |     |     |     |     | 16.7 |
| nes<br>bajo            | Lys | AAA                  | AAG |     |     |     |     | 16.7 |
| Codones<br>on GC ba    | Tyr | TAT                  | TAC |     |     |     |     | 16.7 |
| Co<br>con (            | Phe | TTT                  | TTC |     |     |     |     | 16.7 |
| S                      | Met | ATG                  |     |     |     |     |     | 33.3 |
|                        | Leu | TTA                  | TTG | CTT | CTA | CTC | CTG | 38.9 |
|                        | Ser | TCT                  | TCA | TCC | TCG | AGT | AGC | 50.0 |
| 2                      | Glu | GAA                  | GAG |     |     |     |     | 50.0 |
| Codones<br>n GC neutro | Cys | TGT                  | TGC |     |     |     |     | 50.0 |
|                        | Gln | CAA                  | CAG |     |     |     |     | 50.0 |
| o<br>GC                | Thr | ACT                  | ACA | ACC | ACG |     |     | 50.0 |
| Con                    | Asp | GAT                  | GAC |     |     |     |     | 50.0 |
| ວັ                     | His | CAT                  | CAC |     |     |     |     | 50.0 |
|                        | Val | GTT                  | GTA | GTC | GTG |     |     | 50.0 |
| 0                      | Trp | TGG                  |     |     |     |     |     | 66.7 |
| Codones<br>con GC alto | Arg | AGA                  | AGG | CGT | CGA | CGC | CGG | 72.2 |
|                        | Pro | CCT                  | CCA | CCC | CCG |     |     | 83.3 |
|                        | Gly | GGT                  | GGA | GGC | GGG |     |     | 83.3 |
| 9                      | Ala | GCT                  | GCA | GCC | GCG |     |     | 83.3 |

Los nucleótidos G y C son resaltados en rojo. El contenido de GC de los codones son expresados como porcentaje en la última columna. Los 20 aminoácidos estándar fueron clasificados según el número de nucleótidos G o C, dividido por el número de nucleótidos en sus respectivos codones.

Desde 1961 Sueoka fue pionero en realizar estudios sobre la influencia del GC a partir de secuencias genómicas en los aminoácidos. Sueoka encontró una correlación positiva en algunos aminoácidos como Ala, Arg, Gly y Pro, y una correlación negativa en lle, Lys y Asn con respecto al incremento del contenido de GC genómico de los organismos de estudio<sup>1</sup>.

Otro trabajo que ha validado el descubrimiento de Sueoka es el estudio de Lobry en 1997. Este estudio se basó en ver cómo influía los diferentes contenidos de GC genómico de 59 especies microbianas (bacterias y arqueas) en dos grupos de proteínas: las proteínas integrales de membranas y las proteínas periféricas. Lobry encontró, en ambos grupos de proteínas, que cuando el GC genómico incrementaba, la frecuencia de los aminoácidos Ala, Gly, Pro y Arg de los proteomas tendían a aumentar, mientras que las de Tyr, Lys, Ans e lle tendían a disminuir<sup>22</sup>.

El estudio de Singer y Hickey en el 2000 abarcó diferentes contenidos de GC a partir de secuencias genómicas bacterianas, de levadura y de protozoarios y registró la influencia que ejercía en la composición de aminoácidos clasificados en dos grupos: aquellos con codones ricos en GC (Gly, Ala, Arg, Pro) y con codones ricos en AT (Phe, Tyr, Met, Ile, Asn, Lys), encontrando que, a mayor contenido de GC genómico la presencia de aminoácidos con codones ricos en GC incrementaba, observando un comportamiento contrario en el grupo con codones ricos en AT<sup>20</sup>.

Otro estudio importante por mencionar es de Lightfield y colaboradores en el 2011. Su grupo de estudio fueron especies representativas de cinco filos bacterianos con diferente contenido de GC genómico. Entre los resultados observados fue que, cuando aumentaba el contenido de GC genómico, aumentaba el uso de codones sinónimos de un aminoácido que empiezan con G ó C (e.g. Arg, es codificada con cuatro codones que empiezan con C: CGU, CGC, CGA, CGG) y disminuía con aquellos que empiezan con A (e.g. Arg, es codificada con dos codones que empiezan con A: AGA, AGG)<sup>16</sup>.

# 2.3 Relación del contenido de GC genómico y la longitud del genoma

Una característica abordada en varios estudios, consecuente de la variación del contenido de GC genómico, es el tamaño de genoma. El genoma procariota varía considerablemente y puede ser tan pequeño<sup>5,32</sup> y simple como el genoma de 109 kilobases de *Candidatus Nasuia deltocephalinicola*<sup>8,33</sup>, o tan grande y complejo como el genoma de 16 megabases de *Minicystis rosea*<sup>8,34</sup>.

Uno de los trabajos más actualizados en estudiar la relación del contenido de GC genómico bacteriano con el tamaño del genoma y sus plásmidos fue el de Almpanis y colaboradores, en el 2018. Ellos encontraron que los genomas más largos tienden a tener contenidos de GC más grandes. Un patrón similar adoptaban sus plásmidos: plásmidos más grandes tuvieron contenidos de GC más grandes, además encontraron una correlación positiva entre el contenido de GC de los plásmidos y el contenido de GC genómico de su bacteria hospedera<sup>8</sup>.

## 2.4 Propuestas para explicar las variaciones en el contenido de GC genómico

Para explicar la variación en el contenido de GC genómico se han formulado varias teorías e hipótesis que resultan importante de mencionar. Los factores que han influenciado esta variación han sido debatidos desde hace 60 años<sup>4,8,15,18,35–39,40–42</sup>. Las principales teorías que se establecen son la teoría de mutación direccional y la teoría de la fuerza selectiva, las cuales se explicarán a continuación.

La teoría de la presión de mutación direccional, propuesta en 1962 por Sueoka, se basa en que el efecto de la mutación sobre el genoma no es azaroso y tiene direccionalidad hacia el más alto o el más bajo contenido de GC del genoma. Esta teoría también considera el aspecto filogenético explicando la amplia variación en el contenido

de GC genómico entre diferentes bacterias y su pequeña heterogeneidad dentro de especies bacterianas individuales<sup>18,38</sup>.

En contraste, la teoría de la fuerza selectiva nos habla del rol de la selección para determinar la composición GC del genoma. Debido a que los genomas bacterianos están compuestos principalmente por genes que codifican proteínas, la fuerza selectiva actúa sobre cada gen para aumentar su contenido de GC y así influye acumulativamente en la composición general de bases genómicas<sup>39</sup>.

En relación a las teorías antes mencionadas, el trabajo de Wu y colaboradores<sup>4</sup>, resume las siguientes hipótesis para explicar las variaciones del contenido de GC genómico en procariotas:

- De resistencia a UV: Alto contenido de GC genómico ofrece una ventaja selectiva a organismos que viven en ambientes que son susceptibles a la luz solar directa e intensa<sup>41</sup>. Ejemplos de estos organismos son representantes de los géneros Actinoplanes, Cellulomonas, Streptomyces, Micromonospora, entre otros.
- De adaptación térmica: Organismos termófilos demuestran una tendencia a tener alto contenido de GC genómico debido a que la termo-estabilidad y termo-labilidad de los aminoácidos son reguladas por codones ricos y bajos en contenido de GC, respectivamente<sup>7,15</sup>. Thermus thermophilus como caso de estudio.
- De fijación de Nitrógeno: Hay contenido de GC genómico significativamente más alto en los miembros del género que fijan nitrógeno que en aquellos que no tienen la habilidad de fijarlo<sup>42</sup>. Ejemplo de las bacterias fijadoras de nitrógeno con más alto GC genómico son del género Aquaspirilum: A. fasciculus, A. itersonii, A. magnetotacticum, A. peregrinum; como del género Vibrio: V. diazotrophicus, V. natriegens, V, pelagius.

- De requerimiento de Oxígeno: Procariotas aerobios presentan un incremento significativo en el contenido de GC genómico en relación con los organismos anaerobios<sup>37</sup>. Un ejemplo de ellos son las bacterias pertenecientes al género Microbacterium: *M. imperiale*, *M. lacticum* y *M. laevaniformans*; del género Micrococcus, Halobacterium, Aquaspirillum, entre otros.
- De la DNA polimerasa III: La variación del contenido de GC es gobernada por los mecanismos de replicación y reparación del DNA. De acuerdo a la combinación dimérica de las subunidades alfa de la DNA pol III, el contenido de GC de los genomas de eubacterias son divididos en tres grupos con distinto espectro de contenido de GC, dnaE1 (espectro completo), dnaE2/E1 (alto GC), y polC/dnaE3 (bajo GC)<sup>4,35</sup>. Como caso de estudio, representantes del género Deinococcus y Thermus fueron evaluadas.

### 2.5 Las proteínas y su segundo nivel de organización estructural

El conjunto de proteínas codificadas por el genoma constituye el proteoma de un organismo. A su vez, las proteínas tienen organización de carácter jerarquizado: estructura primaria, secundaria, terciaria y cuaternaria<sup>43</sup>.

Desde 1951, Paulin y Corey (in Pirovano & Heringa, 2010) sugirieron la existencia de conformaciones regulares dependientes de la secuencia de aminoácidos en las proteínas<sup>25</sup>. Sus estudios apuntaban a dos conformaciones particularmente estables que dan lugar a patrones estructurales repetitivos: hélice alfa y hoja beta. Más tarde, en algunas partes de la proteína, aparecieron pliegues menos regulares. Esta tercera clase de regiones menos estructuradas se conoce comúnmente como lazo<sup>25,44</sup> y junto con las hélices alfa y hojas beta conforman a los elementos de estructura secundaria de una proteína.

La importancia de los aminoácidos y su secuencia radica en que han sido la esencia para predecir las estructuras secundarias de las proteínas<sup>24</sup>, donde llegan a

tener una eficiencia de hasta 80%. Del mismo modo, la distribución de hélices alfa, hojas beta y lazos han sido base en la estructura de las proteínas para clasificarlas según la forma y predecir posible función<sup>25</sup>.

# 2.6 Aminoácidos formadores e interruptores de las estructuras secundarias de las proteínas

Trabajos como el de Chou y Fasman, así como el de Lewis son considerados pioneros por determinar que los aminoácidos tienden a formar o interrumpir los diferentes elementos de estructura secundaria en las proteínas<sup>2,3,45</sup>.

En 1974 Chou y Fasman observaron la frecuencia que ciertos aminoácidos tenían con respecto a las hélices alfa, hojas beta, así como de los lazos. Ellos encontraron que hay aminoácidos formadores, indiferentes e interruptores y esto dependía del valor conocido como Parámetro Conformacional  $(PC)^{2,3}$ . Un ejemplo es el aminoácido Pro, considerado un fuerte interruptor en hélices alfa (PC = 0.59) y hojas beta (PC = 0.62), y de alta ocurrencia en lazos (PC = 1.45).

Otro trabajo apoyado en las investigaciones de Chou y Fasman, fue el de Argos y Palau. Este estudio habla, en términos porcentuales, de la composición de los aminoácidos en hélices alfa y hojas beta, además mencionan a los aminoácidos encontrados en los lazos, previos y posteriores de tales estructuras<sup>26</sup>.

Los parámetros conformacionales de los aminoácidos han sido descritos e idealizados como valores invariantes en todos los organismos. Además han sido referidos en muchas estudios de predicción de estructura secundaria de las proteínas<sup>46</sup>.

## 3. JUSTIFICACIÓN

Nuestro estudio se centra en el análisis de microorganismos debido a su diversidad, abundancia y su enorme importancia básica y aplicada<sup>53</sup>. La razón de estudiar el contenido de GC genómico en procariotas es por el tamaño pequeño de sus genomas, amplia variación del contenido de GC en genoma y el progresivo incremento y accesibilidad de los genomas y proteomas. Adicionalmente, distintas bases de datos se siguen enriqueciendo con una gran cantidad de información nucleotídica, aminoacídica y estructural<sup>47–49</sup>, así como han surgido varias herramientas de apoyo para su análisis<sup>50–53</sup>.

Un aspecto importante que nuestro proyecto trata, y del cual no hay precedente, es la influencia del contenido de GC genómico a nivel estructural secundario de las proteínas. En este sentido, nuestros resultados aportan nuevas evidencias y robustecen el hecho de que el contenido de GC genómico es una característica muy importante y esencial de los organismos, ya que contribuye fuertemente en la arquitectura proteómica, influyendo no solo en la estructura primaria (aminoácidos) sino en las estructuras secundarias (hélice alfa, hoja beta y lazo) de las proteínas.

Por tanto, aún falta un largo camino para comprender la importancia de conocer hasta dónde el contenido de GC genómico puede intervenir, y de qué forma, en ventajas biológicas y/o evolutivas es un camino largo por recorrer. Este proyecto de investigación avanzará una parte del camino, y al mismo tiempo, abrirá paso a nuevas preguntas de investigación.

## 4. HIPÓTESIS

El contenido de GC genómico de los organismos procariotas impone un sesgo en los elementos de estructura secundaria de sus correspondientes proteínas. Este sesgo se verá reflejado en:

- i. Variación en la tendencia de un aminoácido a formar parte de una estructura secundaria;
- ii. Cambios en los valores de los parámetros conformacionales de aminoácidos de las estructuras secundarias de las proteínas del proteoma;
- iii. La composición de los elementos de estructura secundaria de las proteínas del proteoma: hélice alfa, hoja beta y lazo;
- iv. El contenido de las estructuras secundarias de las proteínas ortólogas.

### 5. OBJETIVOS

#### 5.1 OBJETIVO GENERAL

Evaluar, mediante un análisis *in silico*, el posible sesgo que introduce el contenido de GC genómico sobre las estructuras secundarias de las proteínas en bacterias y arqueas.

## 5.2 OBJETIVOS ESPECÍFICOS

a) Determinar el contenido de GC genómico a partir de organismos cuya secuencia genómica haya sido totalmente secuenciada y sean representativos únicos a nivel filogenético de especie.

- b) Establecer la posible relación del contenido de GC genómico de los organismos de estudio con su origen filogenético.
- c) Analizar la frecuencia relativa de los aminoácidos en las estructuras secundarias de las proteínas de los organismos de estudio en relación con el contenido de GC genómico.
- d) Determinar los parámetros conformacionales de los aminoácidos de todas las proteínas de los organismos de estudio en relación con la variación del contenido de GC genómico.
- e) Evaluar la relación de la frecuencia relativa de las estructuras secundarias (hélice alfa, hoja beta y lazo) de las proteínas de los organismos de estudio con el contenido de GC genómico.
- f) Generar grupos de proteínas ortólogas (COGs) de procariotas representativos a nivel género y determinar la frecuencia relativa de las estructuras secundarias (hélice alfa, hoja beta y lazo) de sus proteínas ortólogas en relación con el contenido de GC de los genes que las codifican.
- g) Identificar qué partes de las estructuras secundarias de las proteínas de cada COG son las más afectadas por el contenido de GC de los genes que las codifican.

## 6. MATERIALES Y MÉTODOS

## 6.1 Grupo de datos genómicos y proteómicos

Los datos de secuencias genómicas y proteómicas se dividen en dos grandes grupos de estudio:

- El primero consiste en un conjunto de 4,655 especies procariotas no redundantes extraídas de la base de datos KEGG GENOME en mayo de 2022 (Anexo 1). Para evitar la sobrerrepresentación de un contenido de GC dado, se seleccionaron un total de 192 organismos con contenidos de GC genómico que fueran lo más diferente posible, oscilando entre el 20% a 74% y abarcó los dominios Bacteria y Arquea. La secuencia de aminoácidos, usados para el estudio de estructuras secundarias de las proteínas de los organismos seleccionados, también se obtuvo de la misma base de datos.
- El segundo grupo fue usado para nuestro análisis de proteínas ortólogas. Un conjunto de 1,544 procariotas representativos no redundantes a nivel género también fue obtenido de la base de KEGG GENOME. Asimismo, este segundo grupo fue caracterizado en términos de su contenido de GC y la estructura secundaria de sus proteínas.

#### 6.2 Clasificación taxonómica

La asignación taxonómica de nuestros grupos de organismos de estudio fue llevada a cabo de acuerdo con la base de datos KEGG GENOME<sup>54</sup> (<a href="https://www.genome.jp/kegg/genome/">https://www.genome.jp/kegg/genome/</a>).

### 6.3 Evaluación del contenido de GC genómico

El propósito de este estudio es el análisis de las estructuras primarias y secundarias de las proteínas en relación con el contenido de GC del genoma en el que están codificadas. Teniendo en cuenta eso, para las evaluaciones del contenido de GC genómico solo se consideraron las regiones genómicas correspondientes a los genes que codifican proteínas. Las coordenadas genómicas de los genes que codifican GENES<sup>54</sup> **KEGG** proteínas se tomaron de la base de datos (https://www.genome.jp/kegg/genes.html).

Se calculó el contenido de GC genómico de la región codificante para cada uno de los 192 organismos seleccionados usando la siguiente fórmula:

$$GC_G = \frac{\sum_{g \in P(G)} GC(g)}{\sum_{g \in G} |g|}$$

donde G es el genoma de interés, P(G) son los genes que codifican proteínas de G (el proteoma de G), g es un gen dado que codifica a una proteína, |g| es su longitud, y GC(g) es el número de nucleótidos G o C en g.

## 6.4 Clasificación de los aminoácidos de acuerdo con el contenido de GC de sus codones

Se clasificaron los 20 aminoácidos del Código Genético según el contenido de GC de sus codones en tres grupos (Tabla 1). El primer grupo tiene 5 aminoácidos con alto contenido de GC en sus codones: Ala, Gly, Pro, Arg y Trp; el segundo tiene 8 aminoácidos con contenido neutro de GC en sus codones: Val, His, Asp, Thr, Gln, Cys, Glu y Ser; y el tercer grupo tiene 7 aminoácidos con bajo contenido de GC en sus codones: Leu, Met, Phe, Tyr, Lys, Asn e Ile.

#### 6.5 Evaluación de la frecuencia de aminoácidos en los proteomas

Para cada proteoma de nuestros 192 organismos de estudio se evaluó la frecuencia relativa de cada uno de los 20 aminoácidos usando la siguiente fórmula:

$$aa^G = \frac{\sum_{p \in P(G)} |p(aa)|}{|P(G)|},$$

donde G es el genoma de interés, P(G) es su proteoma, aa es un aminoácido dado, p es una proteína, |p(aa)| es el número de veces que el aminoácido aa aparece en la proteína p, y |P(G)| es el número total de aminoácidos en el proteoma P de G.

#### 6.6 Predicción de las estructuras secundarias de las proteínas

Los elementos de estructura secundaria de las proteínas, hélices alfa, hojas beta y lazos, se predijo usando PSSPRED<sup>55</sup> versión 4 (<a href="https://seq2fun.dcmb.med.umich.edu//PSSpred/">https://seq2fun.dcmb.med.umich.edu//PSSpred/</a>).

# 6.7 Evaluación de la frecuencia de aminoácidos en las estructuras secundarias de los proteomas

Se analizó el contenido de los aminoácidos en las diferentes estructuras secundarias de las proteínas de nuestro primer grupo de estudio, compuesto por 192 procariotas, usando las siguientes fórmulas:

$$aa_{\alpha}^G = \frac{\sum_{p \in P(G)} |\alpha(p, aa)|}{\sum_{p \in P(G)} |\alpha(p)|},$$

$$aa_{\beta}^G = \frac{\sum_{p \in P(G)} |\beta(p, aa)|}{\sum_{p \in P(G)} |\beta(p)|},$$

$$aa_{\gamma}^{G} = \frac{\sum_{p \in P(G)} |\gamma(p, aa)|}{\sum_{p \in P(G)} |\gamma(p)|},$$

donde G es el genoma de interés, P(G) su proteoma, aa es un aminoácido dado, p es una proteína, |ss(p,aa)| es el número de veces que aa aparece en la estructura secundaria ss (puede ser aa: hélice alfa, aa: hoja beta o aa: hoja beta o aa: helice alfa, aa: helice alfa, aa: hoja beta o aa: helice alfa, aa: hoja beta o aa: helice alfa, aa: heli

6.8 Análisis del efecto del sesgo del contenido de GC genómico en los parámetros conformacionales de los aminoácidos en la estructura secundaria de las proteínas

Para cada una de las 192 secuencias proteómicas consideradas en el primer grupo de estudio, se evaluaron los parámetros conformacionales de los aminoácidos para las estructuras secundarias usando el procedimiento original descrito por Chou y Fasman<sup>2</sup>. Es importante describir dos variables. La primera es la frecuencia de cada residuo de aminoácido presente en las estructuras secundarias (hélice alfas, hoja beta y lazos) en relación con la frecuencia de tales aminoácidos en el proteoma:

$$F_{ss}^{aa} = \frac{\sum_{p \in P(G)} |ss(p, aa)|}{\sum_{p \in P(G)} |p(aa)|},$$

donde G es el genoma de interés, P(G) es su proteoma, aa es un aminoácido dado, p es una proteína, |ss(p,aa)| es el número de veces que aa aparece en la estructura secundaria ss (puede ser aa: alfa-hélice, aa: hoja beta ó aa: lazo) en una proteína aa: aa: es el número de veces que aa: aparece en la proteína aa: aa:

La segunda variable es la frecuencia relativa de los aminoácidos por cada estructura secundaria (hélice alfa, beta plagada y lazo) con relación al número de aminoácidos en el proteoma:

$$F_{SS} = \frac{\sum_{p \in P(G)} |ss(p)|}{|P(G)|},$$

donde G es el genoma de interés, P(G) es su proteoma, |P(G)| es su longitud, p es una proteína, y |ss(p)| es la longitud de la estructura secundaria ss (puede ser  $\alpha$ : alfa-hélice,  $\beta$ : hoja beta ó  $\gamma$ : lazo) en la proteína p.

Los parámetros conformacionales (PC) fueron obtenidos cuando  $F_{ss}^{aa}$  es dividido por  $F_{ss}$  como se ve la siguiente fórmula:

$$PC = \frac{F_{ss}^{aa}}{F_{ss}}.$$

Los valores así obtenidos fueron graficados con respecto al contenido de GC de sus correspondientes secuencias genómicas.

# 6.9 Evaluación de las frecuencias de estructuras secundarias de los proteomas

Las frecuencias en las que los diferentes elementos de estructura secundaria, hélices alfa, hojas beta o lazos, representados en los proteomas fueron evaluados usando las siguientes fórmulas, respectivamente:

$$Alf a^G = \frac{\sum_{p \in P(G)} |\alpha(p)|}{|P(G)|},$$

$$Beta^G = \frac{\sum_{p \in P(G)} |\beta(p)|}{|P(G)|},$$

$$Coil^G = \frac{\sum_{p \in P(G)} |\gamma(p)|}{|P(G)|},$$

donde G es el genoma de interés, P(G) es su proteoma, |P(G)| es el número total de aminoácidos en el proteoma, p es una proteína dada del proteoma P(G),  $\alpha(p)$  es el número de aminoácidos encontrados en hélices alfa,  $\beta(p)$  es el número de aminoácidos en hojas beta y  $\gamma(p)$  es el número de aminoácidos que forman parte de los lazos.

### 6.10 Agrupación de proteínas en COGs

A partir de la base de datos KEGG GENOME<sup>54</sup>, un conjunto de 1,544 procariotas representativo a nivel género fue elegido como el segundo grupo de estudio. Las proteínas de este conjunto de organismos fueron agrupadas en COGs (Clusters of Orthologous Genes)<sup>56</sup> mediante un análisis computacional de un algoritmo de cuatro pasos:

- Primero, para un COG dado en la base de datos COG de NCBI (<a href="https://www.ncbi.nlm.nih.gov/research/cog">https://www.ncbi.nlm.nih.gov/research/cog</a>), se obtuvieron todas las proteínas correspondientes.
- Segundo, para cada conjunto de grupos COG, se alinearon las proteínas usando el programa MUSCLE<sup>57</sup>.
- Tercero, para cada COG, un modelo oculto de Markov (HMM) fue construido usando el programa de hmmerbuild del paquete HMMER<sup>58</sup>.

 Cuarto, usando las matrices generadas con HMM para cada COG, se evaluaron todas las secuencias de proteínas en nuestro grupo de organismos para identificar los dominios de proteínas que mejor corresponden al modelo.

### 6.11 Selección de secuencias de proteínas representativas por COGs

En el grupo de investigación del Dr. Merino se cuenta con una asignación de COGs hecha con modelos ocultos de Markov (HMM), descritos en el punto 6.10 de esta sección. Para seleccionar las secuencias de proteínas ortólogas que mejor representaran a cada COG, se obtuvo la distribución de las longitudes de las proteínas perteneciente a cada COG y fueron evaluadas la media y la desviación estándar. Los criterios son descritos a continuación:

- Como primer criterio para considerar a una proteína como representante de un COG para el análisis de estructura secundaria, solo se incluyó aquellas proteínas cuyas longitudes estuvieran ubicadas a no más de una desviación estándar a partir de la media de la distribución de longitud correspondiente.
- Para el segundo criterio de inclusión, se evaluó la distribución de las longitudes de los dominios COG identificados en las proteínas utilizando los correspondientes modelos ocultos de Markov (HMM) para cada COG. Aquí solo se incluyeron aquellas proteínas cuyas secuencias tuvieran una cobertura de al menos el 80% del valor promedio de la longitud del dominio COG.

La primera condición fue usada para excluir proteínas multidominio con regiones grandes de secuencia que no estuvieran asociadas con el COG a analizar y la segunda condición fue usada para descartar proteínas con dominios COG parciales.

# 6.12 Evaluación de las frecuencias de las estructuras secundarias de las proteínas COG

La estructura secundaria de las proteínas de los COG se predijo utilizando PSSPRED<sup>55</sup> versión 4. Con estos datos, se calculó la frecuencia de las estructuras secundarias: hélices alfa, hojas beta y lazos para cada uno de los 4,511 COGs de nuestro estudio, utilizando las siguientes fórmulas:

$$COG_{\alpha}^{p} = \frac{|\alpha(p)|}{|p|},$$

$$COG_{\beta}^{p} = \frac{|\beta(p)|}{|p|},$$

$$COG_{\gamma}^{p} = \frac{|\gamma(p)|}{|p|},$$

donde p es una proteína dada, |p| es la longitud de la secuencia de la proteína, y |ss(p)| es el número de aminoácidos predichos a estar presentes en una de las tres principales estructuras secundarias de proteínas (a: hélice alfa,  $\beta$ : hoja beta, y: lazos).

## 6.13 Alineamientos múltiples de los elementos de estructura secundaria de proteínas ortólogas

Las estructuras secundarias de las proteínas se representaron como un código de tres letras, H, E y C para representar los elementos de hélice alfa, hoja beta y lazo, respectivamente. Los elementos de la estructura secundaria de cada COG fueron alineados usando el programa MUSCLE<sup>57</sup>.

#### 6.14 Lenguaje de programación usados

El pipeline generado para acceder y procesar los datos de la base de datos KEGG y los resultados obtenidos por el programa PSSPRED<sup>55</sup> fueron escritos en Perl, Python 3 y R y están disponibles en <a href="https://biocomputo.ibt.unam.mx/gcto2d/programs/">https://biocomputo.ibt.unam.mx/gcto2d/programs/</a>. Para el análisis de los datos se usaron las paqueterías Pandas<sup>59</sup> y Numpy<sup>60</sup> de Python 3, para el análisis estadístico se usó *format.value* de la paquetería base de R.

En el laboratorio del Dr. Merino se desarrolló el servicio web GCto2D (<a href="https://biocomputo.ibt.unam.mx/gcto2d/">https://biocomputo.ibt.unam.mx/gcto2d/</a>) para poner a disposición de la comunidad científica nuestros resultados sobre el efecto del contenido de GC de los genes en las estructuras secundarias de las proteínas ortólogas. La página web GCto2D fue desarrollada usando HTML5/CSS como interfaz y se complementó con una combinación de vanilla JavaScript, PHP, Perl y MySQL para el backend y así garantizar una interacción rápida con los navegadores web modernos. El servicio de implementación está alojado en una instancia del servidor Apache HTTPD v2.4.

### 7. RESULTADOS

7.1 Diversidad del contenido de GC genómico a través de filos procariotas

A partir del primer grupo de estudio, el cual estaba conformado por 4,655 secuencias genómicas no redundantes de especies procariotas, se seleccionaron 192 basadas en su contenido de GC genómico, de las cuales 178 secuencias corresponden a bacterias y 14 a arqueas. El rango del contenido de GC genómico de estos organismos de estudio fue amplio, del 20 al 74% (Fig 1).

Los valores del contenido de GC genómico de nuestros 192 organismos de estudio fueron agrupados en 32 filos, de los cuales 28 eran de bacteria y solo 4 de

arqueas (Tabla S1). En la Fig 1 se pueden observar claras tendencias específicas para algunos filos:

- Actinobacteria fue el filo con contenido de GC genómico más alto, con una media de 70.42%, con miembros como *Cellulomonas fimi* ATCC 484 presentando el valor de contenido de GC de 74.6%. Acidobacteria también presentó un contenido de GC alto, con una media de 62.64% entre sus miembros.
- Fusobacteria y Tenericutes fueron los filos que presentaron valores con bajo contenido de GC genómico, con una media de 29.69% y 26.64%, respectivamente.
- El filo Proteobacteria merece una mención especial debido a que cuenta con el número más grande de organismos representativos secuenciados y con el rango del contenido de GC genómico más amplio. Se observó variación en la media del contenido de GC genómico entre las principales cuatro clases de Proteobacteria: Alpha, Beta, Delta y Gamma con valores de 54.41%, 58.67%, 57.37% y 45.53%, respectivamente.

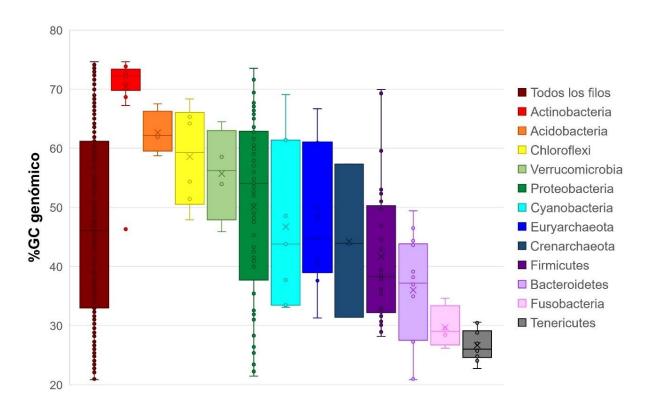



Figura 1. Distribución del contenido de GC genómico de 192 procariotas de estudio. Los boxplots muestran los resultados de 12 filos con al menos tres organismos con respecto a su contenido de GC genómico. El primer boxplot corresponde a los valores de contenido de GC genómico de todos los microorganismos de estudio, que van del 20 al 74%. Los boxplots fueron ordenados de mayor a menor de acuerdo con los valores de contenido de GC genómico del primer cuartil.

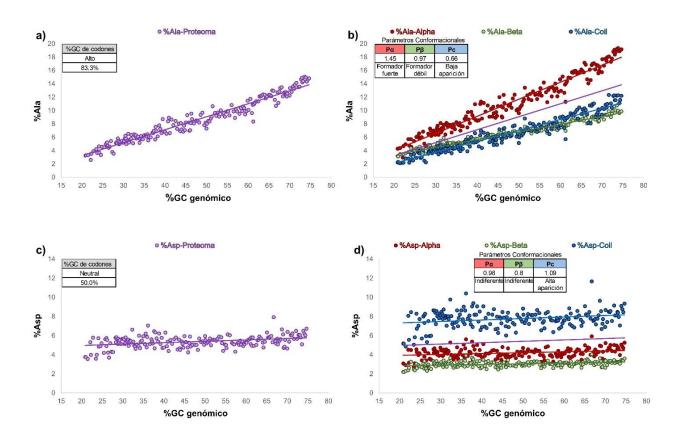
# 7.2 El contenido de GC genómico impone un sesgo en la frecuencia de aminoácidos del proteoma y las estructuras secundarias de sus proteínas

Debido a los diferentes contenidos de GC de los codones utilizados para codificar cada uno de los 20 aminoácidos, se ha documentado ampliamente que las frecuencias relativas de los aminoácidos de los proteomas varían a medida que fluctúa el contenido de GC genómico<sup>1,16,19–22</sup>.

Diversos estudios han agrupado a los aminoácidos según el contenido de GC de los codones que los codifican y fueron analizadas sus frecuencias en los proteomas con respecto al GC genómico<sup>16,19,20,22</sup>. Es decir, con el incremento del contenido de GC genómico, la composición de los aminoácidos codificados por codones con alto

contenido de GC tendieron a incrementar (Ala, Gly y Pro), mientras que aquellos codificados por codones con bajo contenido de GC tendieron a disminuir (Lys, Ans e IIe).

En el presente estudio se categorizó a los aminoácidos en tres grupos: aquellos codificados por codones con contenido de GC alto, neutro y bajo (Tabla 1) y se realizó un estudio similar a los mencionados anteriormente utilizando un conjunto de 192 genomas procariotas, obteniendo resultados concordantes (Fig 2a, c, e y Fig S1). Para la mayoría de los aminoácidos, se observó una relación lineal entre el contenido de GC de sus codones y las frecuencias relativas con la cual son encontradas en los proteomas, mientras que algunos otros, tal como Gln y Met, los modelos de regresión polinomial más complejos se ajustan mejor a la curva (Fig S1 h.1, m.1, respectivamente).


En las gráficas de lado izquierdo de la Fig 2, la relación de la frecuencia de cada uno de los 20 aminoácidos, con respecto al contenido de GC genómico de 192 procariotas, mostró lo siguiente:

- Una regresión lineal con pendiente positiva (Fig 2a y Fig S1 a.1 d.1, Tabla S2)
  para los aminoácidos codificados por codones ricos en contenido de GC (Ala, Gly,
  Pro, Arg y Trp; Tabla 1).
- Los aminoácidos codificados por codones neutros en contenido de GC (His, Asp, Thr, Cys, Glu y Ser; Tabla 1) parecen no estar afectados de manera importante por el contenido de GC genómico (Fig 2c y Fig S1 f.1 – g.1, i.1 – k.1, Tabla S2).
- Una regresión lineal con pendiente negativa (Fig 2e y S1 n.1 q.1, Tabla S2) para los aminoácidos codificados por codones bajo en contenido de GC (Phe, Tyr, Lys, Asn e Ile; Tabla 1).

Cabe señalar que Val y Leu presentan un comportamiento inusual en sus pendientes con respecto al grupo de aminoácidos al que pertenecen. Esto es, Val (aminoácido con codones neutros en contenido de GC) presenta una correlación positiva

con respecto al incremento del contenido de GC genómico (Fig S1 e.1 y Tabla S2), mientras que Leu (aminoácido con codones bajos en contenido de GC) también presenta tendencia positiva (Fig S1 I.1 y Tabla S2).

Otro punto importante por mencionar es que debido a las propiedades fisicoquímicas de los aminoácidos, estos presentan tendencias específicas que previenen (interruptores), contribuyen (formadores) o tienen un efecto neutral (indiferentes) en la formación de las estructuras secundarias de las proteínas<sup>2,3,24,45,61</sup>. En este sentido, repetimos el análisis descrito anteriormente para las secuencias del proteoma, pero consideramos de forma independiente los aminoácidos presentes en los elementos de estructuras secundarias. Este análisis se muestra como gráficas de la Fig 2b, d, f y Fig S1 a.2 – q.2, además se reportaron los datos de regresión lineal como Tabla S3.



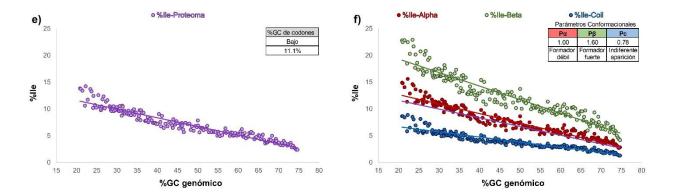



Figura 2. Efecto del sesgo del contenido de GC genómico sobre las frecuencias de los aminoácidos en el proteoma y las estructuras secundarias de proteínas. Las gráficas representan a las frecuencias relativas de los aminoácidos en los proteomas (a, c, e) o en las estructuras secundarias de las proteínas (b, d, f) de 192 procariotas. Los aminoácidos de las figuras fueron elegidos considerando sus tendencias a ser parte de cada una de las estructuras secundarias de las proteínas (b, formador fuerte en hélices alfa; d, indiferente en las tres estructuras secundarias; f, formador fuerte en hojas beta) o considerando el contenido de GC de los codones por los que están codificados (a, c, e, aminoácidos con codones alto, neutro y bajo contenido de GC, respectivamente). Como referencia, las líneas de regresión de la frecuencia de aminoácidos obtenidas en el análisis del proteoma son mostradas en morado (b, d, f). Los parámetros conformacionales de los aminoácidos descritos por Chou y Fasman<sup>2,3</sup> son mostrados en la parte superior de cada gráfica.

En la Fig 2b, d, f se muestran tres ejemplos de la relación entre la frecuencia de un aminoácido en una estructura secundaria en específico con respecto al contenido de GC genómico de nuestros 192 procariotas de estudio y observamos tres principales características:

- Los aminoácidos que tienden a contribuir a la formación (formadores) de una estructura secundaria específica de las proteínas presentaron valores de pendiente más altos que la pendiente de la línea de regresión del proteoma.
- Por otro lado, los aminoácidos que tienden a prevenir (interruptores) la formación de estructuras secundarias de las proteínas presentan valores de pendiente más bajos con respecto a la pendiente de la línea de regresión del proteoma.
- Adicionalmente, aquellos aminoácidos con un efecto neutral (indiferentes) en la formación de las estructuras secundarias presentaron valores de pendientes de línea de regresión similares a los obtenidos en el análisis del proteoma completo.

Un ejemplo representativo de la explicación anterior es el caso del aminoácido Ala, donde la pendiente más alta de la línea de regresión se presenta en la estructura secundaria hélice alfa (línea roja, Fig 2b), quedando por arriba de la pendiente de línea de regresión obtenida por el proteoma (línea morada, Fig 2b). Esto es indicativo de la preferencia de este aminoácido por encontrarse en este tipo de estructura secundaria, mientras que las pendientes más pequeñas para hoja beta y lazo (líneas verde y azul, respectivamente, Fig 2b) indican la baja propensión de Ala a formar parte de las estructuras secundarias antes mencionadas.

7.3 Análisis del efecto del sesgo del contenido de GC genómico en los parámetros conformacionales de los aminoácidos en la estructura secundaria de proteínas

Las tendencias de los aminoácidos a formar parte de una estructura secundaria específica han sido caracterizadas desde 1974 por Chou y Fasman y se expresan como parámetros conformacionales (PC), estos son valores asignados que van de 0 a 2<sup>2,3</sup>. En tales estudios, los PC fueron evaluados considerando dos variables:

- Las frecuencias de cada uno de los aminoácidos presentes en las hélices alfa, hojas beta y lazos en relación con las frecuencias de dichos aminoácidos en el proteoma.
- Las frecuencias relativas de los aminoácidos para cada estructura secundaria en relación con el número de aminoácidos en el proteoma.

Cabe destacar que el número de proteínas utilizadas en el estudio pionero de Chou y Fasman² fue de solo 15. A diferencia del estudio mencionado, en el presente estudio, actualizamos estos valores conformacionales considerando las secuencias de aminoácidos de 192 proteomas completos que se seleccionaron en función del contenido de GC de sus secuencias genómicas correspondientes. Inesperadamente, observamos que los valores conformacionales de algunos aminoácidos no eran constantes. Es decir,

nuestros PC calculados presentaron variaciones pequeñas, pero estadísticamente significativas en función de los valores de contenido de GC genómico (Fig 3).

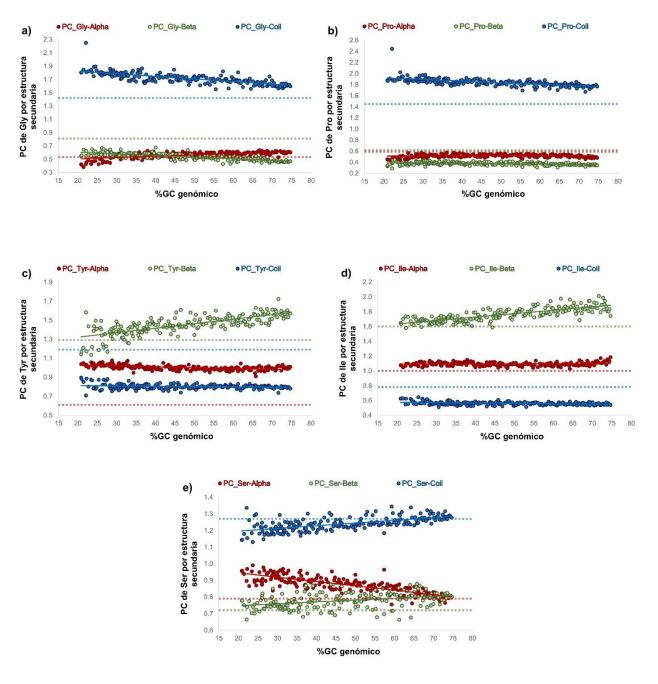



Figura 3. Efecto del contenido de GC genómico sobre los valores de los parámetros conformacionales de aminoácidos. Los valores de PC para Gly, Pro, Tyr, lle y Ser en hélices alfa (círculos rojos), hoja beta (círculos verdes) y lazos (círculos azules) fueron evaluados en función del contenido de GC genómico. Las líneas de regresión de las estructuras secundarias están representadas por líneas continuas, mientras que los valores de PC reportados por Chou y Fasman<sup>2,3</sup> están representados por líneas punteadas.

De acuerdo con los resultados obtenidos en nuestro estudio, los aminoácidos cuyos valores de PC que presentan mayor diferencia significativa a medida que varía el contenido de GC genómico son: Gly y Pro encontrados en lazos (Fig 3a-b, respectivamente); Tyr, Ile, Ala, Asn y Leu en hojas beta (Fig 3c-d y Fig S2 a-c, respectivamente); y Ser en hélices alfa (Fig 3e). El resto de las figuras de aminoácidos se muestran en la Fig S2, y los datos de regresión lineal de todos los aminoácidos se presentan en la Tabla S4.

7.4 El contenido de GC genómico de organismos procariotas impone un sesgo en las frecuencias de estructuras secundarias de los proteomas

Considerando que el contenido de GC genómico en 192 procariotas: (a) puede variar de manera importante de acuerdo con la filogenia de los organismos (Fig 1), (b) afecta las frecuencias totales de los aminoácidos de los proteomas y en sus correspondientes estructuras secundarias (Fig 2), y (c) impone un sesgo en los parámetros conformacionales de aminoácidos (Fig 3). Aquí analizamos si las frecuencias totales de cada estructura secundaria de las proteínas en los proteomas varían en función del contenido de GC de los genomas por los que están codificados (Fig 4).

Nuestros resultados indican que la composición de estructuras secundarias de los proteomas no es universal, sino que presenta variaciones que se correlacionan con el contenido de GC genómico. A medida que aumenta el contenido de GC de los genomas, las frecuencias relativas de los lazos tienden a aumentar, mientras que las frecuencias relativas de las hélices alfa y las hojas beta tienden a disminuir (Fig 4, los datos de regresión lineal en Tabla S5).

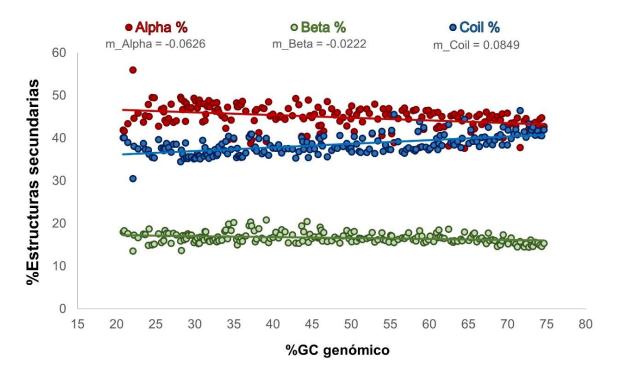



Figura 4. Frecuencia relativa de las estructuras secundarias de los proteomas en función del contenido de GC genómico. Las frecuencias relativas de las estructuras secundarias: hélice alfa, hoja beta y lazo en nuestros organismos de estudio fueron evaluadas y graficadas con respecto a su correspondiente contenido de GC genómico. Se obtuvo una regresión lineal para cada uno de los elementos de estructura secundaria. El valor de la pendiente (m) para cada regresión lineal se indica en parte superior de la figura.

7.5 El contenido de GC de los genes impone un sesgo en las estructuras secundarias de algunas familias de proteínas ortólogas (COGs)

Los cambios pequeños, pero estadísticamente significativos en la frecuencia relativa de las estructuras secundarias de los proteomas en función del contenido de GC genómico, identificado y mostrado en la Fig 4, pueden explicarse por al menos tres razones diferentes:

- a. Por la presencia de diferentes proteínas en los proteomas;
- b. Por un cambio en las frecuencias relativas de las estructuras secundarias en proteínas ortólogas; o
- c. Por una combinación de las posibilidades anteriores.

Con el fin de determinar cuál de estas posibilidades (a., b., ó c.) es la más acertada, repetimos nuestro análisis del efecto de sesgo del contenido de GC en la estructura secundaria de las proteínas considerando diferentes conjuntos de genes ortólogos. Para tener más confianza en nuestros análisis, ampliamos el conjunto inicial de organismos de referencia para incluir 1,544 procariotas representativas a nivel de género.

En este nuevo análisis, las proteínas ortólogas se agruparon teniendo en cuenta la clasificación de la base de datos COG<sup>56</sup>. Para garantizar que las comparaciones entre proteínas se restringieran principalmente a dominios homólogos, utilizamos criterios de inclusión estrictos para la selección de proteínas en los grupos COG (Materiales y Métodos).

Las gráficas del contenido de GC de genes ortólogos contra las frecuencias relativas de sus estructuras secundarias revelaron que, para la mayoría de los COGs, no

hubo una variación significativa en las estructuras secundarias, tal como se muestra en el COG0002 (Fig. 5a, los datos de regresión lineal en la Tabla S6).

En contraste con el resultado anterior, nuestro estudio también mostró que casi el 5% de las secuencias COG analizadas presentaban variaciones pequeñas, pero estadísticamente significativas, en las estructuras secundarias de sus proteínas a medida que variaba el contenido de GC de sus genes correspondientes. Un ejemplo de este tipo se presenta en el COG3228 (Fig 5b y los datos de regresión lineal en la Tabla S6).

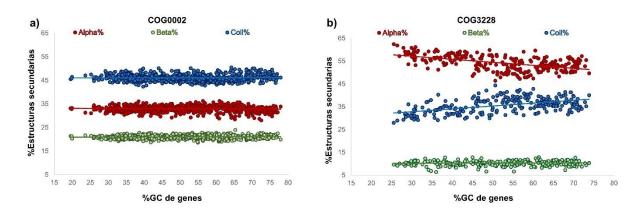



Figura 5. Regresión lineal comparativa entre COGs, sin y con sesgo impuesto por el contenido de GC de sus respectivos genes. a) COG0002: Acetilglutamato semialdehído deshidrogenasa y b) COG3228: Proteína no caracterizada conservada en bacterias. Las líneas de regresión para cada estructura secundaria se muestran como líneas sólidas.

Además de los resultados presentados en la Fig 5, representamos las hélices alfa, las hojas beta y los lazos con las letras H, E y C, respectivamente, y realizamos alineamientos múltiples de las estructuras secundarias de las proteínas ortólogas. Esto se hizo con el motivo de observar qué parte de la secuencia de proteínas ortólogas es mayormente sesgado por el contenido de GC de los genes que las codifican.

Las secuencias alineadas muestran una conservación significativa de la estructura secundaria en la mayoría de los grupos de proteínas ortólogas (COGs), este efecto es independiente de las importantes diferencias en los contenidos de GC de sus

respectivos genes que codifican proteínas, como se observa en los alineamientos múltiples de las estructuras secundarias del COG0002 (Fig S3).

Por otro lado, también mostramos los alineamientos múltiples de secuencias del COG3228 como un ejemplo de proteínas ortólogas que presentó variaciones en sus estructuras secundarias a medida que variaba el contenido de GC de sus genes (Fig S4). Para este tipo de COGs, observamos que los extremos amino- y carboxi- terminal de sus proteínas son las regiones más propensas a variaciones en la longitud y composición de sus estructuras secundarias.

El conjunto completo de gráficos para todos los COGs analizados y sus alineamientos múltiples de estructura secundaria de proteínas, están disponibles en nuestro servidor web GCto2D (<a href="https://biocomputo.ibt.unam.mx/gcto2d/">https://biocomputo.ibt.unam.mx/gcto2d/</a>).

### 8. CONCLUSIONES

Una de las principales características de los genomas de los organismos procariotas es la gran variación en la frecuencia con la que se utilizan las bases Guanina-Citosina (GC) en sus secuencias de DNA genómico. Estudios pioneros han demostrado el impacto del contenido de GC genómico en la distribución filogenética y en la frecuencia relativa de aminoácidos en los proteomas de los organismos<sup>1,16,19–22</sup>.

Como primer punto, nuestro trabajo enriqueció estudios sobre la variación del contenido de GC genómico a través de diferentes filos procariotas, usando bases de datos actualizadas. Se observó que algunos filos no solo comparten un origen evolutivo, sino que están compuestos por microorganismos con características en común como el contenido de GC genómico, como es el caso de las Actinobacterias y Tenericutes.

Después de varias décadas de los primeros informes, el presente estudio da un paso más y analiza el efecto del contenido genómico de GC en la estructura secundaria de las proteínas. Como segundo punto demostramos, a través de un estudio

bioinformático, que la tendencia de un aminoácido a formar parte de una estructura secundaria varía en función del contenido de GC genómico. Además, como tercer punto, nuestro estudio muestra que los parámetros conformacionales de los aminoácidos en las estructuras secundarias de las proteínas: hélices alfa, hojas beta y lazos, no son constantes como se esperaba en un principio, sino que presentan variaciones estadísticamente significativas según el contenido de GC genómico.

Dado lo encontrado en el párrafo anterior, podemos decir que los parámetros conformacionales de Chou y Fasman han sido la referencia fundamental en cientos de estudios para predecir las estructuras secundarias de las proteínas. Sin embargo, estos parámetros conformacionales pueden ser visto faltos de rigurosidad al no tomar en cuenta otras características importantes como la composición total de proteínas (proteoma) y la influencia de su contenido de GC genómico de un organismo.

Adicionalmente, como punto cuatro, encontramos que la composición de las estructuras secundarias de los proteomas varía en relación con el contenido de GC genómico: los lazos aumentan a medida que aumenta el contenido de GC genómico, mientras que las hélices alfa y las hojas beta presentan una relación inversa. Con respecto a que los lazos de las proteínas aumentan al incrementar el contenido de GC genómico, se espera que las proteínas serán más propensas a tener regiones o proteínas intrínsecamente desordenadas (IDR o IDP, respectivamente).

Finalmente, como quinto punto, descubrimos que para la mayoría de los grupos de proteínas ortólogas la composición de estructuras secundarias parece mayormente invariante a pesar de que el contenido de GC de los genes que las codifican presenten variaciones. No obstante, identificamos que para algunos grupos particulares de proteínas ortólogas, el contenido de GC de los genes impone un sesgo en la composición de las estructuras secundarias de las proteínas que codifican.

## 9. PERSPECTIVAS

Recapitulando, el contenido de GC genómico es una característica biológica importante en todos los organismos, capaz de influenciar en rasgos esenciales como lo es el tamaño del genoma, los elementos genéticos (plásmidos), la relación filogenética, la adaptación a un ambiente, la composición de la estructura primaria y secundaria de las proteínas (nuestro proyecto), entre otras. De aquí se deriva la relevancia de seguir incrementando el conocimiento del efecto del contenido de GC genómico en otras propuestas abordando diferentes niveles estructurales de las proteínas.

Nuestro estudio del efecto del contenido de GC genómico puede ser complementado con un árbol filogenético que muestre los ambientes de los cuales provienen los organismos de estudio, el estilo de vida al que pertenecen, el tamaño del genoma y otras características distintivas. Además, ya que se cuenta con la predicción de estructuras secundarias, el contenido de GC genómico también puede ser extendido analizando el uso codónico de los aminoácidos de los procariotas de estudio.

Apoyándonos de la premisa de que el GC genómico impacta en una minoría de grupos de proteínas ortólogas, nuestro trabajo puede ampliarse, de manera que se estudie el contenido de GC y el posible impacto en los elementos del pangenoma: genes núcleo, genes dispensables y genes únicos<sup>62</sup>.

Otra manera que puede ser abordado el estudio del GC genómico es utilizando herramientas de predicción estructural de proteínas (como AlphaFold<sup>63</sup>). De esta manera se visualizaría mejor qué partes de las proteínas, hablando en términos de estructura primaria y secundaria, se ve principalmente afectado por el contenido de GC genómico.

Finalmente, nuestro trabajo al estudiar el sesgo del GC genómico en las estructuras secundarias de las proteínas, abre la posibilidad de abarcar nuevas preguntas de investigación en los niveles superiores de organización de las proteínas:

estructura terciaria (influencia en zonas internas y externas) y cuaternaria (influencia en monómeros y zonas de contacto entre monómeros).

## 10. APÉNDICE

El artículo científico fue enviado, aceptado y publicado en la revista PLOS ONE.

Se adjunta el link del artículo:

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285201

Se adjunta la cita del artículo:

The effect of the genomic GC content bias of prokaryotic organisms on the secondary structures of their proteins. Barceló-Antemate D, Fontove-Herrera F, Santos W, Merino E (2023). PLOS ONE 18(5): e0285201. <a href="https://doi.org/10.1371/journal.pone.0285201">https://doi.org/10.1371/journal.pone.0285201</a>

También se adjunta la portada el artículo:

#### **PLOS ONE**

RESEARCH ARTICLE

The effect of the genomic GC content bias of prokaryotic organisms on the secondary structures of their proteins

Diana Barceló-Antemate<sup>1,2</sup>, Fernando Fontove-Herrera<sup>3</sup>, Walter Santos<sub>0</sub><sup>1</sup>, Enrique Merino<sub>0</sub><sup>1</sup>\*

- 1 Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México, 2 Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, México, 3 C3 Consensus, León, Guanajuato, México
- \* enrique.merino@ibt.unam.mx

#### Abstract

One of the main characteristics of prokaryotic genomes is the ratio in which guanine-cytosine bases are used in their DNA sequences. This is known as the genomic GC content and varies widely, from values below 20% to values greater than 74%. It has been demonstrated that the genomic GC content varies in accordance with the phylogenetic distribution of organisms and influences the amino acid composition of their corresponding proteomes This bias is particularly important for amino acids that are coded by GC content-rich codons such as alanine, glycine, and proline, as well as amino acids that are coded by AT-rich codons, such as lysine, asparagine, and isoleucine. In our study, we extend these results by considering the effect of the genomic GC content on the secondary structure of proteins. On a set of 192 representative prokaryotic genomes and proteome sequences, we identified through a bioinformatic study that the composition of the secondary structures of the proteomes varies in relation to the genomic GC content; random coils increase as the genomic GC content increases, while alpha-helices and beta-sheets present an inverse relationship. In addition, we found that the tendency of an amino acid to form part of a secondary structure of proteins is not ubiquitous, as previously expected, but varies according to the genomic GC content. Finally, we discovered that for some specific groups of orthologous proteins, the GC content of genes biases the composition of secondary structures of the proteins for which they code.



OPEN ACCESS

Citation: Barceló-Antemate D, Fontove-Herrera F, Santos W, Merino E (2023) The effect of the genomic GC content bias of prokaryotic organisms on the secondary structures of their proteins. PLoS ONE 18(5): e0285201. https://doi.org/10.1371/ journal.pone.0285201

Editor: Surya Saha, Boyce Thompson Institute, UNITED STATES

Received: December 26, 2022

Accepted: April 17, 2023

Published: May 4, 2023

Copyright: © 2023 Barceló-Antemate et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

## 11. MATERIAL COMPLEMENTARIO

## **Tablas Complementarias**

**Tabla S1.** Clasificación taxonómica de 192 procariotas con su contenido de GC genómico. El dominio, filo y especie es mostrado en la primera, segunda y tercera columna, respectivamente. El ID KEGG es encontrado en la cuarta columna. Los organismos de estudio están en orden ascendente con respecto al contenido de GC genómico (quinta columna).

| Dominio  | Filo           | Especie                                                                                        | ID_KEGG           | %GC genómico |
|----------|----------------|------------------------------------------------------------------------------------------------|-------------------|--------------|
| Bacteria | Bacteroidetes  | Candidatus Sulcia muelleri PSPU                                                                | smup              | 20.8321⁺     |
| Bacteria | Bacteroidetes  | Candidatus Sulcia muelleri CARI                                                                | sum               | 20.9465      |
| Bacteria | Proteobacteria | Buchnera aphidicola BCc, endosymbiont of Cinara cedri                                          | pcc 8             | 21.4278      |
| Bacteria | Unclasiffied   | Bacterium AB1                                                                                  | baab              | 22.0578      |
| Bacteria | Proteobacteria | Candidatus Purcelliella pentastirinorum OLIH                                                   | ppet <sup>g</sup> | 22.2156      |
| Bacteria | Tenericutes    | Candidatus Hepatoplasma crinochetorum Av                                                       | hcr               | 22.7287      |
| Bacteria | Proteobacteria | Candidatus Portiera aleyrodidarum AF-CAI                                                       | pli <sup>g</sup>  | 23.4017      |
| Bacteria | Proteobacteria | Wigglesworthia glossinidia (Wigglesworthia brevipalpis), endosymbiont of Glossina brevipalpis  | wbr <sup>g</sup>  | 23.6454      |
| Bacteria | Tenericutes    | Mycoplasma capricolum subsp. capripneumoniae 9231-Abomsa                                       | mcac              | 24.0394      |
| Archaea  | Nanoarchaeota  | Candidatus Nanopusillus acidilobi                                                              | naa               | 24.1400      |
| Bacteria | Tenericutes    | Candidatus Phytoplasma ziziphi Jwb-nky                                                         | pzi               | 24.5311      |
| Bacteria | Tenericutes    | Spiroplasma floricola 23-6                                                                     | sfz               | 24.7916      |
| Bacteria | Proteobacteria | Candidatus Profftella armatura                                                                 | ssdc <sup>b</sup> | 25.3511      |
| Bacteria | Tenericutes    | Ureaplasma parvum serovar 3 ATCC 700970                                                        | uur               | 25.7104      |
| Bacteria | Tenericutes    | Ureaplasma urealyticum serovar 10 ATCC 33699                                                   | uue               | 25.9949      |
| Bacteria | Tenericutes    | Spiroplasma kunkelii CR2-3x                                                                    | skn               | 25.9949      |
| Bacteria | Fusobacteria   | Streptobacillus moniliformis DSM 12112                                                         | smf               | 26.1605      |
| Bacteria | Proteobacteria | Buchnera aphidicola USDA, endosymbion of Myzus persicae                                        | bapu <sup>g</sup> | 26.3736      |
| Bacteria | Proteobacteria | Wigglesworthia glossinidia endosymbiont of Glossina morsitans morsitans                        | wgl <sup>g</sup>  | 26.6267      |
| Bacteria | Tenericutes    | Mesoplasma tabanidae BARC 857                                                                  | mtab              | 26.9512      |
| Bacteria | Bacteroidetes  | Blattabacterium sp. Bge, endosymbiont of Blattella germanica                                   | bbl               | 27.2471      |
| Bacteria | Bacteroidetes  | Blattabacterium sp. (Mastotermes darwiniensis) MADAR, endosymbiont of Mastotermes darwiniensis | bmm               | 27.5994      |
| Bacteria | Firmicutes     | Paeniclostridium sordellii AM370                                                               | psor              | 28.1833      |
| Bacteria | Proteobacteria | Candidatus Babela massiliensis BABL1 (delta proteobacterium BABL1)                             | dpb <sup>d</sup>  | 28.2811      |
| Bacteria | Fusobacteria   | Sneathia amnii Sn35                                                                            | sns               | 28.4298      |
| Bacteria | Proteobacteria | Arcobacter nitrofigilis DSM 7299                                                               | ant               | 28.6183      |
| Bacteria | Tenericutes    | Candidatus Mycoplasma girerdii VCU_M1                                                          | mgj               | 28.7858      |
| Bacteria | Firmicutes     | Parvimonas micra KCOM 1535                                                                     | pmic              | 28.9066      |
| Bacteria | Thermotogae    | Marinitoga piezophila KA3                                                                      | mpz               | 29.1024      |
| Bacteria | Tenericutes    | Acholeplasma palmae J233                                                                       | apal              | 29.1959      |
| Bacteria | Fusobacteria   | Fusobacterium mortiferum ATCC 9817                                                             | fmo               | 29.5523      |
| Bacteria | Spirochaetes   | Borrelia turicatae 91E135                                                                      | btu               | 29.8880      |
| Bacteria | Firmicutes     | Clostridioides difficile 630 (Clostridium difficile 630)                                       | cdf               | 30.0737      |
| Bacteria | Firmicutes     | Clostridium saccharoperbutylacetonicum N1-4(HMT)                                               | csr               | 30.2976      |
| Bacteria | Tenericutes    | Mesoplasma syrphidae YJS                                                                       | msyr              | 30.4348      |
| Bacteria | Tenericutes    | Spiroplasma eriocheiris DSM 21848                                                              | seri              | 30.5609      |
| Bacteria | Firmicutes     | Gottschalkia acidurici 9a (Clostridium acidurici 9a)                                           | cad               | 30.6765      |
| Bacteria | Proteobacteria | Ehrlichia canis Jake                                                                           | ecn ª             | 30.9901      |
| Bacteria | Proteobacteria | Campylobacter coli OR12                                                                        | ccoo              | 31.1465      |
| Archaea  | Euryarchaeota  | Methanothermococcus okinawensis IH1                                                            | mok               | 31.2872      |
| Archaea  | Crenarchaeota  | Acidianus manzaensis YN-25                                                                     | aman              | 31.3988      |
| Bacteria | Firmicutes     | Gemella sp. oral taxon 928                                                                     | got               | 31.5735      |
| Bacteria | Firmicutes     | Clostridium ljungdahlii DSM 13528                                                              | clj               | 31.7764      |
| Bacteria | Proteobacteria | Francisella halioticida DSM 23729                                                              | fha <sup>g</sup>  | 31.8845      |
| Bacteria | Firmicutes     | Finegoldia magna ATCC 29328                                                                    | fma               | 32.2942      |
| Bacteria | Proteobacteria | Allofrancisella guangzhouensis (Francisella guangzhouensis 08HL01032)                          | fgu <sup>g</sup>  | 32.5550      |
| Bacteria | Proteobacteria | Rickettsia sp. MEAM1 (Bemisia tabaci)                                                          | ric <sup>a</sup>  | 32.7790      |
| Bacteria | Firmicutes     | Melissococcus plutonius DAT561                                                                 | mpx               | 32.9302      |
| Bacteria | Cyanobacteria  | Candidatus Atelocyanobacterium thalassa (Cyanobacterium UCYN-A)                                | cyu               | 33.0668      |
| Bacteria | Cyanobacteria  | Geminocystis sp. NIES-3708                                                                     | gee               | 33.4436      |
| Bacteria | Dictyoglomi    | Dictyoglomus thermophilum H-6-12                                                               | dth               | 33.8117      |
| Archaea  | Thaumarchaeota | Candidatus Nitrosopumilus adriaticus NF5                                                       | nin               | 33.9370      |
| Bacteria | Nitrospirae    | Thermodesulfovibrio yellowstonii DSM 11347                                                     | tye               | 34.1596      |

Tabla S1. Continuación...

| Dominio              | Filo                            | Especie                                                           | ID_KEGG                  | %GC genómico       |
|----------------------|---------------------------------|-------------------------------------------------------------------|--------------------------|--------------------|
| Bacteria             | Ignavibacteriae                 | Ignavibacterium album JCM 16511                                   | ial                      | 34.3083            |
| Bacteria             | Fusobacteria                    | Sebaldella termitidis ATCC 33386                                  | str                      | 34.6157            |
| Bacteria             | Bacteroidetes                   | Winogradskyella sp. J14-2                                         | wij                      | 34.9474            |
| Bacteria             | Firmicutes                      | Turicibacter sp. H121                                             | tur                      | 35.3083            |
| Bacteria             | Proteobacteria                  | Wolbachia sp. wRi, endosymbiont of Drosophila simulans            | wri <sup>a</sup>         | 35.4029            |
| Bacteria             | Firmicutes                      | Thermoanaerobacterium saccharolyticum JW/SL-YS485                 | tsh                      | 35.5487            |
| Bacteria             | Firmicutes                      | Bacillus thuringiensis HD-789                                     | btn                      | 35.7603            |
| Bacteria             | Deferribacteres                 | Calditerrivibrio nitroreducens DSM 19672                          | cni                      | 35.9156            |
| Bacteria             | Firmicutes                      | Anaerococcus prevotii DSM 20548                                   | apr                      | 36.0897            |
| Bacteria             | Firmicutes                      | Caldicellulosiruptor hydrothermalis 108                           | chd                      | 36.5166            |
| Bacteria             | Bacteroidetes                   | Formosa sp. Hel3_A1_48                                            | foh                      | 36.9274            |
| Bacteria             | Bacteroidetes                   | Pseudopedobacter saltans DSM 12145 (Pedobacter saltans DSM 12145) | psn                      | 37.1201            |
| Bacteria             | Bacteroidetes                   | Arachidicoccus sp. KIS59-12                                       | ark                      | 37.2681            |
| Archaea              | Euryarchaeota                   | Methanohalobium evestigatum Z-7303                                | mev                      | 37.5836            |
| Bacteria             | Cyanobacteria                   | Stanieria sp. NIES-3757                                           | stan                     | 37.7091            |
| Bacteria             | Firmicutes                      | Lactobacillus heilongjiangensis DSM 28069                         | lhi                      | 37.8905            |
| Bacteria             | Bacteroidetes                   | Fermentimonas caenicola                                           | pbt                      | 38.1817            |
| Bacteria             | Firmicutes                      | Listeria monocytogenes 07PF0776 (serotype 4b)                     | Imp                      | 38.5580            |
| Bacteria             | Firmicutes                      | Lactobacillus amylovorus GRL1118                                  | lay                      | 38.8181            |
| Bacteria             | Bacteroidetes                   | Capnocytophaga sp. ChDC OS43                                      | capn                     | 39.1228            |
| Bacteria             | Firmicutes                      | Leuconostoc citreum KM20                                          | lci                      | 39.4209            |
| Bacteria             | Chlamydiae                      | Chlamydia psittaci 84/55                                          | cpsb                     | 39.6117            |
| Bacteria             | Proteobacteria                  | Helicobacter pylori 2018                                          | hpw                      | 39.9743            |
| Archaea              | Euryarchaeota                   | Methanosalsum zhilinae DSM 4017                                   | mzh                      | 40.3322            |
| Bacteria             | Elusimicrobia                   | Elusimicrobium minutum Pei191                                     | emi                      | 40.6903            |
| Bacteria             | Proteobacteria                  | Pseudoalteromonas translucida KMM 520                             | ptn <sup>g</sup>         | 40.8837            |
| Archaea              | Euryarchaeota                   | Pyrococcus furiosus COM1                                          | pfi                      | 41.1008            |
| Bacteria             | Proteobacteria                  | Pseudoalteromonas spongiae UST010723-006                          | pspo <sup>g</sup>        | 41.5243            |
| Bacteria             | Proteobacteria                  | Candidatus Paracaedibacter acanthamoebae PRA3                     | paca a                   | 41.9552            |
| Bacteria             | Proteobacteria                  | Cycloclasticus sp. P1                                             | cyq g                    | 42.4815            |
| Bacteria             | Firmicutes                      | Lentibacillus amyloliquefaciens LAM0015                           | lao                      | 42.8933            |
| Bacteria             | Proteobacteria                  | Coxiella burnetii RSA 331                                         | cbs g                    | 43.2978            |
| Bacteria             | Bacteroidetes                   | Bacteroides caecimuris I48                                        | bcae                     | 43.6398            |
| Bacteria             | Cyanobacteria                   | Nostocales cyanobacterium HT-58-2                                 | ncn                      | 43.7823            |
| Archaea              | Crenarchaeota                   | Caldivirga maquilingensis IC-167                                  | cma                      | 43.9167            |
| Bacteria             | Bacteroidetes                   | Odoribacter splanchnicus DSM 20712                                | osp                      | 44.3467            |
| Bacteria             | Firmicutes                      | Bacillus subtilis subsp. spizizenii TU-B-10                       | bst                      | 44.5173            |
| Archaea              | Euryarchaeota                   | Ferroglobus placidus DSM 10642                                    | fpl                      | 44.7096            |
| Bacteria             | Candidatus Saccharibacteria     | Candidatus Saccharibacteria oral taxon TM7x                       | sox                      | 44.9521            |
| Bacteria             | Proteobacteria                  | Shewanella putrefaciens CN-32                                     | spc <sup>g</sup>         | 45.3007            |
| Bacteria             | Synergistetes                   | Aminobacterium colombiense DSM 12261                              | aco                      | 45.7533            |
| Bacteria             | Verrucomicrobia                 | Methylacidiphilum infernorum V4                                   | min                      | 45.8507            |
| Bacteria             | Calditrichaeota                 | Caldithrix abyssi DSM 13497                                       | caby                     | 46.0097            |
| Bacteria             | Chlorobi                        | Chloroherpeton thalassium ATCC 35110                              | cts                      | 46.1385            |
| Bacteria             | Actinobacteria                  | Atopobium parvulum DSM 20469                                      | apv                      | 46.3081            |
| Bacteria             | Bacteroidetes                   | Saprospira grandis Lewin                                          | sgn                      | 46.4727            |
| Bacteria             | Firmicutes                      | Bacillus infantis NRRL B-14911                                    | bif                      | 46.9142            |
| Bacteria             | Proteobacteria                  | Desulfotalea psychrophila LSv54                                   | dps <sup>d</sup>         | 47.4956            |
| Bacteria             | Chloroflexi                     | Dehalococcoides mccartyi DCMB5                                    | dmd                      | 47.8840            |
| Bacteria             | Proteobacteria                  | Helicobacter heilmannii ASB1.4                                    | hhm                      | 48.2185            |
| Bacteria<br>Bacteria | Cyanobacteria<br>Proteobacteria | Pseudanabaena sp. PCC 7367                                        | pseu<br>she <sup>g</sup> | 48.5366<br>48.9649 |
|                      | Proteobacteria<br>Bacteroidetes | Shewanella sp. MR-4                                               |                          | 48.9649<br>49.4097 |
| Bacteria<br>Bacteria | Firmicutes                      | Porphyromonas gingivalis ATCC 33277 Paenibacillus swuensis DY6    | pgn                      | 49.4097<br>49.7223 |
| Archaea              | Euryarchaeota                   | Methanothermobacter wolfeii SIV6                                  | pswu<br>mwo              | 49.7223            |
| Bacteria             | Firmicutes                      | Clostridium bolteae ATCC BAA-613                                  | cbol                     | 50.0545            |
| Bacteria             | Proteobacteria                  | Bdellovibrio bacteriovorus Tiberius                               | bbat                     | 50.0545            |
| Bacteria             | Proteobacteria                  | Desulfomonile tiedjei DSM 6799                                    | dti d                    | 50.6788            |
| Bacteria             | Firmicutes                      | Acidaminococcus intestini RyC-MR95                                | ain                      | 51.0016            |
| Bacteria             | Firmicutes                      | Selenomonas ruminantium subsp. lactilytica TAM6421                | am<br>sri                | 51.2020            |
| Bacteria             | Chloroflexi                     | Herpetosiphon aurantiacus DSM 785                                 | hau                      | 51.4149            |
| Bacteria             | Proteobacteria                  | Mariprofundus aestuarium CP-5                                     | maes                     | 51.9917            |
| Bacteria             | Firmicutes                      | Christensenella minuta DSM 22607                                  | cmiu                     | 52.3041            |
| Dacteria             | i iiiiiidates                   | Official folia fillinata DOM 22007                                | UITIIU                   | J2.JUT I           |

Tabla S1. Continuación...

| Dominio  | Filo                         | Especie                                                              | ID_KEGG           | %GC genómico |
|----------|------------------------------|----------------------------------------------------------------------|-------------------|--------------|
| Bacteria | Proteobacteria               | Cellvibrio japonicus Ueda107                                         | cja <sup>g</sup>  | 52.6590      |
| Bacteria | Firmicutes                   | Lactobacillus fermentum F-6                                          | Îff               | 52.9948      |
| Bacteria | Proteobacteria               | Granulosicoccus antarcticus IMCC3135                                 | gai <sup>g</sup>  | 53.3986      |
| Bacteria | Verrucomicrobia              | Coraliomargarita akajimensis DSM 45221                               | caa               | 53.9251      |
| Bacteria | Proteobacteria               | Citrobacter sp. CFNIH10                                              | cir g             | 54.0723      |
| Bacteria | Chloroflexi                  | Anaerolinea thermophila UNI-1                                        | atm               | 54.3740      |
| Bacteria | Proteobacteria               | Magnetococcus marinus MC-1                                           | mgm <sup>a</sup>  | 54.7933      |
| Bacteria | Proteobacteria               | Serratia fonticola GS2                                               | sfg <sup>g</sup>  | 55.0409      |
| Bacteria | Armatimonadetes              | Chthonomonas calidirosea T49                                         | CCZ               | 55.1617      |
| Bacteria | Planctomycetes               | Rhodopirellula baltica SH 1 (Pirellula sp. strain 1)                 | rba               | 55.4576      |
| Bacteria | Proteobacteria               | Haematospirillum jordaniae H5569                                     | hjo a             | 55.9861      |
| Bacteria | Proteobacteria               | Enterobacter hormaechei subsp. xiangfangensis LMG27195               | exf <sup>g</sup>  | 56.4948      |
| Bacteria | Chrysiogenetes               | Desulfurispirillum indicum S5                                        | din               | 56.7991      |
| Bacteria | Proteobacteria               | Serratia plymuthica PRI-2C                                           | sply g            | 57.0459      |
| Archaea  | Crenarchaeota                | Aeropyrum camini SY1 = JCM 12091                                     | aci               | 57.3136      |
| Bacteria | Proteobacteria               | Desulfohalobium retbaense DSM 5692                                   | drt d             | 57.8989      |
| Bacteria | Proteobacteria               | Cronobacter malonaticus CMCC45402 (Cronobacter sakazakii CMCC 45402) | CSi <sup>g</sup>  | 58.1391      |
| Bacteria | Proteobacteria               | Klebsiella pneumoniae 30684/NJST258_2                                | kps <sup>g</sup>  | 58.2669      |
| Bacteria | Verrucomicrobia              | Akkermansia glycaniphila APytT                                       | agl               | 58.5367      |
| Bacteria | Acidobacteria                | Granulicella mallensis MP5ACTX8                                      | gma               | 58.7453      |
| Bacteria | Proteobacteria               | Pseudomonas cichorii JBC1                                            | pci g             | 59.0336      |
| Bacteria | Candidatus Peregrinibacteria | Candidatus Peribacter riflensis                                      | prf               | 59.2436      |
| Bacteria | Firmicutes                   | Kyrpidia tusciae DSM 2912                                            | bts               | 59.5610      |
| Bacteria | Proteobacteria               | Dechloromonas aromatica RCB                                          | dar <sup>b</sup>  | 59.8727      |
| Bacteria | Proteobacteria               | Desulfomicrobium orale DSM 12838                                     | doa d             | 60.0706      |
| Bacteria | Proteobacteria               | Agrobacterium rhizogenes K599                                        | aro a             | 60.5231      |
| Archaea  | Euryarchaeota                | Methanoculleus sp. MAB1                                              | mema              | 60.8900      |
| Bacteria | Proteobacteria               | Serratia marcescens WW4                                              | smw <sup>g</sup>  | 61.0617      |
| Archaea  | Euryarchaeota                | Methanopyrus kandleri AV19                                           | mka               | 61.1975      |
| Bacteria | Cyanobacteria                | Gloeobacter kilaueensis JS1                                          | glj               | 61.3675      |
| Bacteria | Proteobacteria               | Halothiobacillus sp. LS2                                             | haz <sup>g</sup>  | 61.5751      |
| Bacteria | Acidobacteria                | Chloracidobacterium thermophilum B                                   | ctm               | 61.8880      |
| Bacteria | Acidobacteria                | Candidatus Solibacter usitatus Ellin6076                             | sus               | 62,4283      |
| Bacteria | Proteobacteria               | Sinorhizobium meliloti Rm41                                          | smi a             | 62.7275      |
| Bacteria | Proteobacteria               | Sinorhizobium americanum CFNEI 73                                    | same a            | 63.0290      |
| Bacteria | Proteobacteria               | Martelella mediterranea DSM 17316 MACL11                             | mmed <sup>a</sup> | 63.1697      |
| Bacteria | Proteobacteria               | Mesorhizobium opportunistum WSM2075                                  | mop <sup>a</sup>  | 63.5854      |
| Bacteria | Proteobacteria               | Chromobacterium rhizoryzae JP2-74                                    | crz <sup>b</sup>  | 64.0046      |
| Bacteria | Chloroflexi                  | Thermomicrobium roseum DSM 5159                                      | tro               | 64.1814      |
| Bacteria | Verrucomicrobia              | Opitutaceae bacterium TAV5                                           | obt               | 64.4881      |
| Bacteria | Proteobacteria               | Sulfitobacter sp. AM1-D1                                             | suam <sup>a</sup> | 65.0155      |
| Bacteria | Chloroflexi                  | Candidatus Promineofilum breve Cfx-K                                 | pbf               | 65.2923      |
| Bacteria | Proteobacteria               | Dyella japonica A8                                                   | dja <sup>g</sup>  | 65.5524      |
| Bacteria | Proteobacteria               | Novosphingobium resinovorum SA1                                      | nre ª             | 65.7624      |
| Bacteria | Proteobacteria               | Paracoccus zhejiangensis J6                                          | pzh ª             | 66.0626      |
| Bacteria | Proteobacteria               | Pseudomonas aeruginosa PA38182                                       | paeu <sup>g</sup> | 66.3909      |
| Archaea  | Euryarchaeota                | Salinigranum rubrum GX10                                             | srub              | 66.6672      |
| Bacteria | Proteobacteria               | Roseateles depolymerans KCTC 42856                                   | rdp <sup>b</sup>  | 67.0588      |
| Bacteria | Actinobacteria               | Rubrobacter radiotolerans RSPS-4                                     | rrd               | 67.2519      |
| Bacteria | Acidobacteria                | Luteitalea pratensis                                                 | abac              | 67.5117      |
| Bacteria | Proteobacteria               | Variovorax paradoxus B4                                              | vpd <sup>b</sup>  | 67.6780      |
| Bacteria | Proteobacteria               | Orrella dioscoreae LMG 29303                                         | odi <sup>b</sup>  | 68.0388      |
| Bacteria | Chloroflexi                  | Sphaerobacter thermophilus DSM 20745                                 | sti               | 68.3435      |
| Bacteria | Actinobacteria               | Stackebrandtia nassauensis DSM 44728                                 | sna               | 68.6585      |
| Bacteria | Actinobacteria               | Kibdelosporangium phytohabitans KLBMP1111                            | kphy              | 68.9564      |
| Bacteria | Cyanobacteria                | Cyanobium sp. NIES-981                                               | cyi               | 69.0785      |
| Bacteria | Firmicutes                   | Symbiobacterium thermophilum IAM 14863                               | sth               | 69.2860      |
| Bacteria | Proteobacteria               | Vulgatibacter incomptus DSM 27710                                    | vin <sup>d</sup>  | 69.4201      |
| Bacteria | Firmicutes                   | Limnochorda pilosa HC45                                              | lpil              | 69.9349      |
| Bacteria | Actinobacteria               | Alloactinosynnema sp. L-07                                           | alo ∙             | 70.0457      |
| Bacteria | Deinococcus                  | Deinococcus ficus CC-FR2-10                                          | dfc               | 70.4350      |
| Bacteria | Actinobacteria               | Actinoplanes friuliensis DSM 7358                                    | afs ●             | 70.8156      |
| Bacteria | Actinobacteria               | Streptomyces davaonensis JCM 4913 (Streptomyces davawensis JCM 4913) | sdv ●             | 71.0467      |

Tabla S1. Continuación...

| Dominio  | Filo           | Especie                                                       | ID_KEGG | %GC genómico         |
|----------|----------------|---------------------------------------------------------------|---------|----------------------|
| Bacteria | Actinobacteria | Nakamurella multipartita DSM 44233                            | nml ●   | 71.2232              |
| Bacteria | Proteobacteria | Sorangium cellulosum So ce56                                  | scl d   | 71.5924              |
| Bacteria | Actinobacteria | Sanguibacter keddieii DSM 10542                               | ske ●   | 72.0986              |
| Bacteria | Actinobacteria | Nonomuraea sp. ATCC 55076                                     | noa ●   | 72.3458              |
| Bacteria | Actinobacteria | Frankia sp. Eul1c                                             | fri •   | 72.6910              |
| Bacteria | Actinobacteria | Conexibacter woesei DSM 14684                                 | cwo ●   | 72.9344              |
| Bacteria | Actinobacteria | Plantactinospora sp. KBS50                                    | plk ●   | 73.0400              |
| Bacteria | Actinobacteria | Streptomyces cattleya NRRL 8057 = DSM 46488                   | scy ●   | 73.2316              |
| Bacteria | Proteobacteria | Anaeromyxobacter sp. Fw109-5                                  | afw d   | 73.5390              |
| Bacteria | Actinobacteria | Cellvibrio gilvus ATCC 13127 (Cellulomonas gilvus ATCC 13127) | cga ●   | 73.8365              |
| Bacteria | Actinobacteria | Geodermatophilus obscurus DSM 43160                           | gob ●   | 74.1259              |
| Bacteria | Actinobacteria | Kineococcus radiotolerans SRS30216                            | kra ∙   | 74.3394              |
| Bacteria | Actinobacteria | Cellulomonas fimi ATCC 484                                    | cfi ●   | 74.6389 <sup>†</sup> |

- Grupo de Actinobacteria con mayor contenido de GC genómico.
- \* Candidatus Sulcia muelleri PSPU (smup) es el Bacteroidete endosimbionte con contenido de GC genómico más pequeño en este estudio.
- <sup>†</sup> Cellulomonas fimi ATCC 484 (cfi) es la Actinobacteria con más alto contenido de GC genómico.
- <sup>a</sup> Especies bacterianas incluidas dentro de la clase Alphaproteobacteria, ellos presentan un promedio de contenido de GC genómico de 54.41%.
- <sup>b</sup> Especies bacterianas incluidas dentro de la clase Betaproteobacteria, ellos presentan una media de contenido de GC genómico de 58.66%.
- d Especies bacterianas incluidas dentro de la clase Deltaproteobacteria, tienen un promedio de contenido de GC genómico de 57.37%
- g Especies bacterianas incluidas dentro de la clase Gammaproteobacteria, ellos presentan una media de contenido de GC genómico de 45.53%.

Tabla S2. Regresión lineal de 20 aminoácidos en el proteoma de 192 procariotas con respecto a su contenido de GC genómico. La m (pendiente), b (intercepto), R (correlación), R² (coeficiente de determinación) y *p-value* son presentados a partir de la segunda a la sexta columna, respectivamente.

| Aminoácido     | m       | b       | R       | R²     | p-value |
|----------------|---------|---------|---------|--------|---------|
| Ан             | 0.1942  | -0.6453 | 0.9740  | 0.9487 | < 0.001 |
| G <sup>H</sup> | 0.0837  | 3.1541  | 0.9435  | 0.8902 | < 0.001 |
| Р              | 0.0712  | 0.8446  | 0.945   | 0.893  | < 0.001 |
| R <sup>H</sup> | 0.1131  | -0.0751 | 0.9545  | 0.9112 | < 0.001 |
| W              | 0.0164  | 0.3779  | 0.8017  | 0.6427 | < 0.001 |
| V              | 0.0666  | 3.7122  | 0.8138  | 0.6622 | < 0.001 |
| Н              | 0.0140  | 1.2715  | 0.6139  | 0.3769 | < 0.001 |
| D              | 0.0147  | 4.6611  | 0.3622  | 0.1312 | < 0.001 |
| Т              | 0.0188  | 4.3333  | 0.4717  | 0.2225 | < 0.001 |
| Q ***          | 0.0072  | 3.0399  | 0.1255  | 0.0157 | 0.0831  |
| С              | -0.0024 | 1.0792  | -0.1410 | 0.0199 | 0.0519  |
| E              | -0.0180 | 7.1860  | -0.2939 | 0.0864 | < 0.001 |
| S              | -0.0309 | 7.4957  | -0.6623 | 0.4387 | < 0.001 |
| L              | 0.0254  | 8.9142  | 0.5032  | 0.2532 | < 0.001 |
| M**            | -0.0032 | 2.4477  | -0.1257 | 0.0158 | 0.0816  |
| F              | -0.0467 | 6.4165  | -0.8737 | 0.7634 | < 0.001 |
| Υ              | -0.0534 | 5.8465  | -0.9054 | 0.8198 | < 0.001 |
| Kι             | -0.1870 | 14.9165 | -0.9590 | 0.9196 | < 0.001 |
| Nι             | -0.1214 | 10.1984 | -0.9506 | 0.9037 | < 0.001 |
| l r            | -0.1622 | 14.8264 | -0.9558 | 0.9135 | < 0.001 |

<sup>&</sup>lt;sup>H</sup> aminoácidos con codones altos en contenido de GC y con valores absolutos de pendiente más altas.

La aminoácidos con codones bajos en contenido de GC y con valores absolutos de pendiente más altas.

<sup>\*\* =</sup> Met en el proteoma se ajusta mejor a una regresión polinomial de orden 2,

 $y = -0.0013x^2 + 0.1206x - 0.2143$  con una  $R^2 = 0.4648$ .

<sup>\*\*\* =</sup> Gln en el proteoma se ajusta mejor a una regresión polinomial de orden 3,

 $y = -4E - 05x^3 + 0.0045x^2 - 0.1001x + 3.1997$  con una  $R^2 = 0.2178$ .

**Tabla S3.** Regresión lineal de 20 aminoácidos en la estructura secundaria de 192 proteomas con respecto a su contenido de GC genómico. Los datos de m, b, R, R², and *p-value* son presentados para hélices alfa (de la segunda a la sexta columna), hojas beta (a partir de la séptima a la onceava columna) y lazos (a partir de doceava a la decimosexta columna).

| SS         |         | -       | Alfa hélice | )      |         |         | Ве      | eta plega | da     |         |         |         | Lazo    |        |         |
|------------|---------|---------|-------------|--------|---------|---------|---------|-----------|--------|---------|---------|---------|---------|--------|---------|
| Aminoácido | m       | b       | R           | R²     | p-value | m       | b       | R         | R²     | p-value | m       | b       | R       | R²     | p-value |
| Α          | 0.2549  | -1.0588 | 0.9764      | 0.9534 | < 0.001 | 0.1150  | 1.0392  | 0.9727    | 0.9462 | < 0.001 | 0.1639  | -1.1763 | 0.9623  | 0.9261 | < 0.001 |
| G          | 0.0608  | 1.1557  | 0.9371      | 0.8782 | < 0.001 | 0.0275  | 2.4659  | 0.8364    | 0.6996 | < 0.001 | 0.1162  | 6.6287  | 0.9021  | 0.8137 | < 0.001 |
| Р          | 0.0364  | 0.4430  | 0.9612      | 0.9238 | < 0.001 | 0.0238  | 0.4431  | 0.9397    | 0.8830 | < 0.001 | 0.1185  | 2.0880  | 0.9383  | 0.8803 | < 0.001 |
| R          | 0.1303  | -0.2981 | 0.9539      | 0.9099 | < 0.001 | 0.1039  | -0.1822 | 0.9639    | 0.9292 | < 0.001 | 0.0987  | 0.1640  | 0.9419  | 0.8872 | < 0.001 |
| W          | 0.0189  | 0.4129  | 0.7859      | 0.6177 | < 0.001 | 0.0232  | 0.3234  | 0.8154    | 0.6649 | < 0.001 | 0.0116  | 0.3145  | 0.7857  | 0.6173 | < 0.001 |
| V          | 0.0717  | 3.0501  | 0.8280      | 0.6855 | < 0.001 | 0.1522  | 7.0687  | 0.8304    | 0.6896 | < 0.001 | 0.0349  | 2.5419  | 0.7823  | 0.6121 | < 0.001 |
| Н          | 0.0135  | 1.0495  | 0.6113      | 0.3737 | < 0.001 | 0.0169  | 1.1402  | 0.7232    | 0.5231 | < 0.001 | 0.0126  | 1.6268  | 0.5102  | 0.2603 | < 0.001 |
| D          | 0.0094  | 3.7357  | 0.2815      | 0.0793 | < 0.001 | 0.0070  | 2.6965  | 0.3628    | 0.1316 | < 0.001 | 0.0153  | 7.0147  | 0.2578  | 0.0665 | < 0.001 |
| T          | 0.0120  | 3.7068  | 0.3718      | 0.1382 | < 0.001 | 0.0337  | 4.7445  | 0.5966    | 0.3560 | < 0.001 | 0.0181  | 4.9897  | 0.4138  | 0.1713 | < 0.001 |
| Q***       | 0.0087  | 3.5658  | 0.1270      | 0.0161 | 0.0794  | 0.0099  | 2.0761  | 0.2375    | 0.0564 | < 0.001 | 0.0059  | 2.7649  | 0.1124  | 0.0126 | 0.1211  |
| С          | -0.0023 | 0.9390  | -0.1396     | 0.0195 | 0.0519  | -0.0025 | 1.3918  | -0.1142   | 0.0130 | 0.1132  | -0.0026 | 1.1149  | -0.1381 | 0.0191 | 0.0562  |
| E          | -0.0211 | 8.4565  | -0.2932     | 0.0860 | < 0.001 | -0.0053 | 4.9624  | -0.1437   | 0.0207 | 0.0467  | -0.0171 | 6.5451  | -0.2770 | 0.0768 | < 0.001 |
| S          | -0.0422 | 7.2902  | -0.7831     | 0.6133 | < 0.001 | -0.0173 | 5.5095  | -0.4763   | 0.2269 | < 0.001 | -0.0289 | 8.8344  | -0.5580 | 0.3113 | < 0.001 |
| L          | 0.0430  | 11.2351 | 0.6348      | 0.4030 | < 0.001 | 0.0566  | 8.7165  | 0.6934    | 0.4808 | < 0.001 | 0.0071  | 5.5615  | 0.2356  | 0.0555 | < 0.001 |
| M**        | -0.0028 | 2.6296  | -0.0874     | 0.0076 | 0.2268  | 0.0003  | 1.9860  | 0.0104    | 0.0001 | 0.8929  | -0.0050 | 2.4248  | -0.2509 | 0.0629 | < 0.001 |
| F          | -0.0557 | 7.2703  | -0.8850     | 0.7832 | < 0.001 | -0.0470 | 7.9721  | -0.7548   | 0.5697 | < 0.001 | -0.0324 | 4.5541  | -0.8513 | 0.7246 | < 0.001 |
| Υ          | -0.0566 | 6.0155  | -0.9184     | 0.8435 | < 0.001 | -0.0620 | 7.6860  | -0.8296   | 0.6883 | < 0.001 | -0.0438 | 4.7411  | -0.9073 | 0.8231 | < 0.001 |
| K          | -0.2016 | 15.9689 | -0.9554     | 0.9128 | < 0.001 | -0.1283 | 10.5723 | -0.9571   | 0.9161 | < 0.001 | -0.1957 | 15.6069 | -0.9562 | 0.9143 | < 0.001 |
| N          | -0.1001 | 8.2248  | -0.9486     | 0.8998 | < 0.001 | -0.0549 | 5.0262  | -0.9229   | 0.8517 | < 0.001 | -0.1814 | 15.0854 | -0.9527 | 0.9076 | < 0.001 |
| l I        | -0.1773 | 16.2073 | -0.9591     | 0.9198 | < 0.001 | -0.2527 | 24.3623 | -0.9492   | 0.9009 | < 0.001 | -0.0958 | 8.5740  | -0.9343 | 0.8729 | < 0.001 |

ss =estructura secundaria, puede ser hélice alfa, hoja beta o lazo.

<sup>\*\* =</sup>Met se ajusta mejor a una regresión polinomial de orden 2; para hélice alfa  $y = -0.0016x^2 + 0.1532x - 0.7225$  con una  $R^2 = 0.4722$ , para hoja beta  $y = -0.0013x^2 + 0.1212x - 0.6137$  con una  $R^2 = 0.4684$ , para lazo  $y = -0.0009x^2 + 0.0832x + 0.5283$  con una  $R^2 = 0.4374$ .

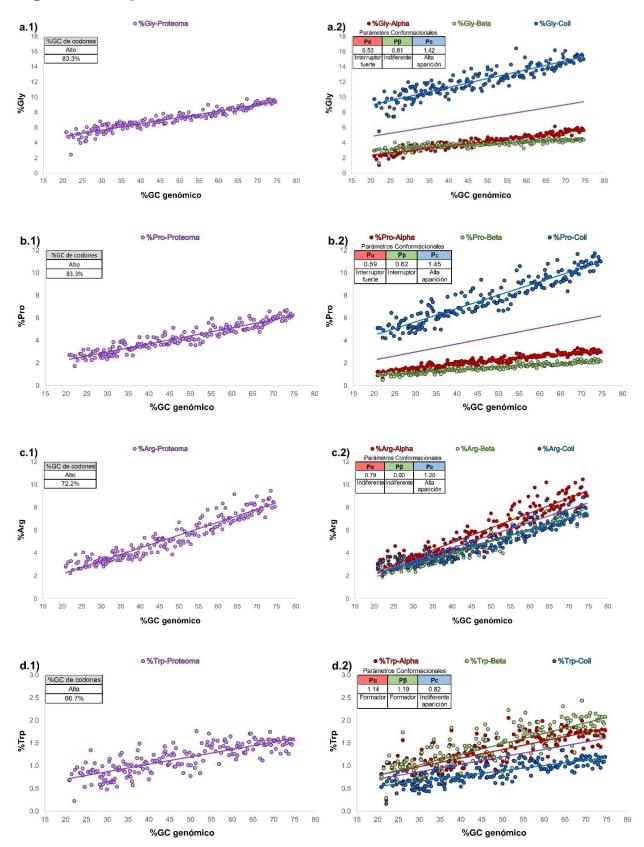
\*\*\* =Gln se ajusta mejor a una regresión polinomial de orden 3:

<sup>\*\*\* =</sup>Gln se ajusta mejor a una regresión polinomial de orden 3; los datos para hélice alfa y = -5E-05x³ +  $0.0054x^2$  - 0.1224x + 3.8258 con una R² de 0.2115, los datos para hoja beta y = -3E-05x³ +  $0.0036x^2$  - 0.0899x + 2.5725 con una R² = 0.2363, los datos para lazo y = -4E-05x³ +  $0.0035x^2$  - 0.0604x + 2.4027 con una R² = 0.2352.

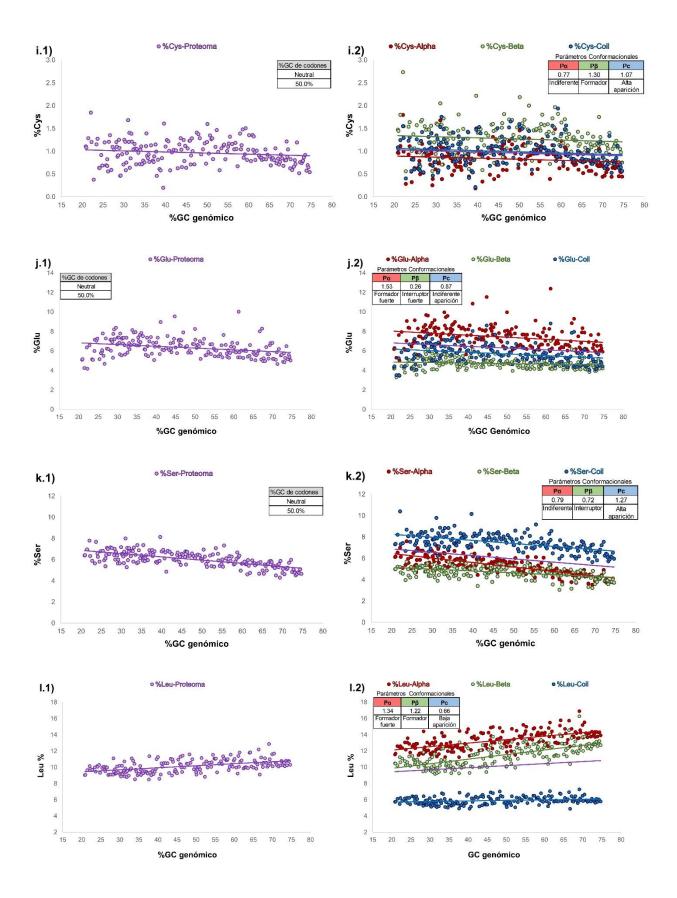
Tabla S4. Regresión lineal de los Parámetros Conformacionales de los aminoácidos a partir de 192 proteomas con respecto a su contenido de GC genómico. Los datos de m, b, R, R², y *p-value* son presentados para hélices alfa (de la segunda a la sexta columna), hojas beta (de la séptima a la onceava columna) y lazos (de la doceava a la decimosexta columna).

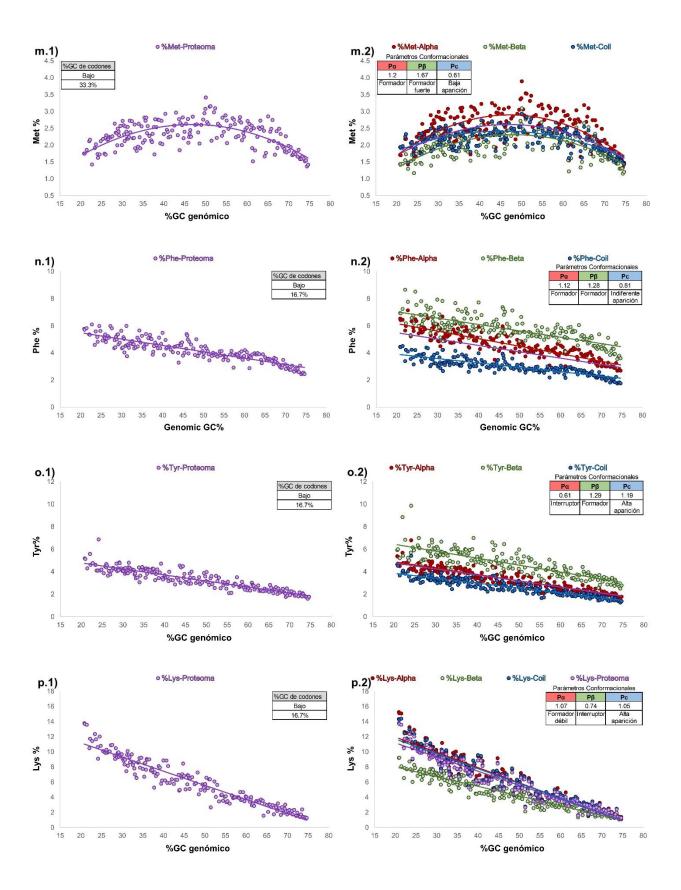
|            |         | ı      | Alfa hélice | •              |         |          | Ве     | ta plega | da             |         | Lazo     |        |         |                |         |
|------------|---------|--------|-------------|----------------|---------|----------|--------|----------|----------------|---------|----------|--------|---------|----------------|---------|
| Aminoácido | m       | b      | R           | R <sup>2</sup> | p-value | m        | b      | R        | R <sup>2</sup> | p-value | m        | b      | R       | R <sup>2</sup> | p-value |
| Ala        | 0.0006  | 1.2552 | 0.3217      | 0.1035         | <0.001  | -0.0044  | 0.9955 | -0.8513  | 0.7247         | <0.001  | 0.0019   | 0.6678 | 0.6105  | 0.3727         | <0.001  |
| Gly        | 0.00207 | 0.4627 | 0.6741      | 0.4543         | < 0.001 | -0.00237 | 0.6495 | -0.7516  | 0.5649         | < 0.001 | -0.0040  | 1.9042 | -0.7383 | 0.5452         | < 0.001 |
| Pro        | 0.00015 | 0.5080 | 0.0794      | 0.0063         | 0.2739  | -0.00057 | 0.4027 | -0.3352  | 0.1124         | < 0.001 | -0.00297 | 1.9810 | -0.6417 | 0.4117         | < 0.001 |
| Arg        | 0.0010  | 1.0572 | 0.5577      | 0.3111         | < 0.001 | 0.00057  | 0.8694 | 0.2466   | 0.0608         | < 0.001 | -0.00117 | 0.9776 | -0.5949 | 0.3539         | < 0.001 |
| Trp        | 0.00041 | 1.1108 | 0.1376      | 0.0189         | 0.0569  | 0.00257  | 1.1012 | 0.4180   | 0.1747         | < 0.001 | -0.00073 | 0.7866 | -0.2146 | 0.0460         | 0.0028  |
| Val        | 0.0014  | 0.8658 | 0.6295      | 0.3963         | < 0.001 | 0.0014   | 2.0106 | 0.2513   | 0.0632         | < 0.001 | -0.00087 | 0.6541 | -0.6550 | 0.4291         | <0.001  |
| His        | 0.0008  | 0.8326 | 0.3116      | 0.0971         | < 0.001 | 0.00138  | 0.9386 | 0.3993   | 0.1594         | < 0.001 | -0.00193 | 1.2462 | -0.5250 | 0.2757         | < 0.001 |
| Asp        | -0.0004 | 0.8001 | -0.2448     | 0.0599         | < 0.001 | -0.00028 | 0.5803 | -0.1474  | 0.0217         | 0.0414  | -0.00095 | 1.4902 | -0.3248 | 0.1055         | <0.001  |
| Thr        | -0.0006 | 0.8473 | -0.3217     | 0.1035         | < 0.001 | 0.00211  | 1.1116 | 0.6199   | 0.3843         | < 0.001 | -0.00063 | 1.1493 | -0.3785 | 0.1433         | <0.001  |
| Gln        | 0.0001  | 1.1701 | 0.0681      | 0.0046         | 0.3490  | 0.0011   | 0.7045 | 0.3027   | 0.0916         | < 0.001 | -0.00017 | 0.9078 | -0.0776 | 0.006          | 0.2847  |
| Cys        | -0.0002 | 0.8637 | -0.0352     | 0.0012         | 0.6285  | 0.00092  | 1.2866 | 0.1204   | 0.0145         | 0.0961  | -0.00022 | 1.0427 | -0.0279 | 0.0008         | 0.7006  |
| Glu        | 0.0000  | 1.1796 | -0.0141     | 0.0002         | 0.8456  | 0.00133  | 0.6848 | 0.4747   | 0.2253         | < 0.001 | -0.00012 | 0.9086 | -0.0537 | 0.0029         | 0.4592  |
| Ser        | -0.0026 | 0.9969 | -0.803      | 0.6448         | < 0.001 | 0.00111  | 0.726  | 0.3739   | 0.1398         | < 0.001 | 0.001629 | 1.1635 | 0.624   | 0.3893         | <0.001  |
| Leu        | 0.0010  | 1.2660 | 0.5042      | 0.2542         | < 0.001 | 0.00275  | 0.9944 | 0.7337   | 0.5383         | < 0.001 | -0.00076 | 0.6192 | -0.6006 | 0.3607         | <0.001  |
| Met**      | 0.00027 | 1.0709 | 0.1001      | 0.01           | 0.1671  | 0.00138  | 0.8039 | 0.4755   | 0.2261         | < 0.001 | -0.00082 | 0.9985 | -0.2288 | 0.0524         | 0.0014  |
| Phe        | -0.0010 | 1.1481 | -0.5594     | 0.3129         | < 0.001 | 0.00433  | 1.1732 | 0.7443   | 0.5541         | < 0.001 | 0.000333 | 0.7034 | 0.1976  | 0.0391         | 0.0060  |
| Tyr        | -0.0009 | 1.0430 | -0.5199     | 0.2703         | < 0.001 | 0.00473  | 1.2261 | 0.7325   | 0.7325         | < 0.001 | -0.00029 | 0.8166 | -0.171  | 0.0292         | 0.0178  |
| Lys        | -0.0007 | 1.0862 | -0.3143     | 0.0988         | < 0.001 | 0.00249  | 0.6435 | 0.6783   | 0.4601         | < 0.001 | -0.00035 | 1.0591 | -0.1582 | 0.025          | 0.0285  |
| Asn        | -0.0010 | 0.8259 | -0.4352     | 0.1894         | < 0.001 | 0.0028   | 0.4312 | 0.7456   | 0.556          | < 0.001 | -0.00156 | 1.5242 | -0.5493 | 0.3018         | < 0.001 |
| lle        | 0.0001  | 1.0892 | 0.064       | 0.0041         | 0.3775  | 0.00458  | 1.5438 | 0.7936   | 0.6299         | <0.001  | -0.00048 | 0.5845 | -0.3379 | 0.1142         | <0.001  |

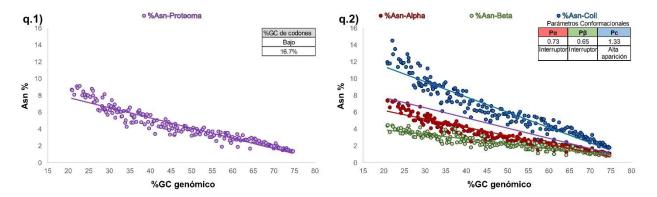
<sup>\*\* =</sup>Met se ajusta mejor a una regresión polinomial de orden 2; para hélice alfa y =  $-0.0001x^2 + 0.0109x + 0.8428$  con una R² = 0.3061, para hoja beta y =  $-6E-05x^2 + 0.007x + 0.6833$  con una R² = 0.2985, para lazo y =  $0.0001x^2 - 0.0152x + 1.3077$  con una R² = 0.3633.


Tabla S5. Regresión lineal de las estructuras secundarias de 192 proteomas con respecto a su contenido de GC genómico. Los datos de m, b, R, R² y *p-value* para hélice alfa, hoja beta y lazo son presentadas.

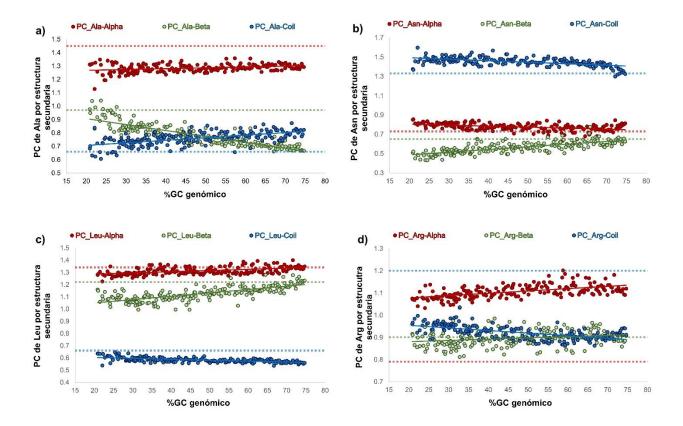

| Estructura secundaria | m       | b       | R       | R²     | p-value |
|-----------------------|---------|---------|---------|--------|---------|
| Alfa hélice           | -0.0626 | 47.9061 | -0.3602 | 0.1297 | < 0.001 |
| Beta plegada          | -0.0222 | 17.6894 | -0.2745 | 0.0754 | < 0.001 |
| Lazo                  | 0.0849  | 34.4046 | 0.5900  | 0.3481 | < 0.001 |

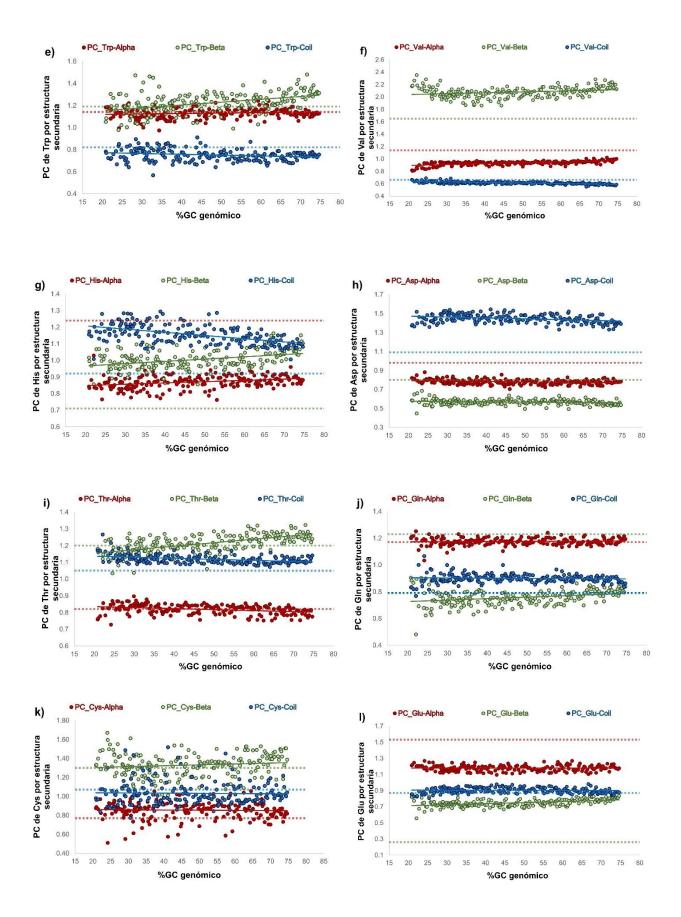

Tabla S6. Regresión lineal de las estructuras secundarias de las proteínas en el COG0002 y COG3228 con respecto al contenido de GC de sus genes. Los datos de m, b, R, R² y *p-value* para hélice alfa, hoja beta y lazo en COG0002 (sin sesgo) y COG3228 (con sesgo) son presentadas.

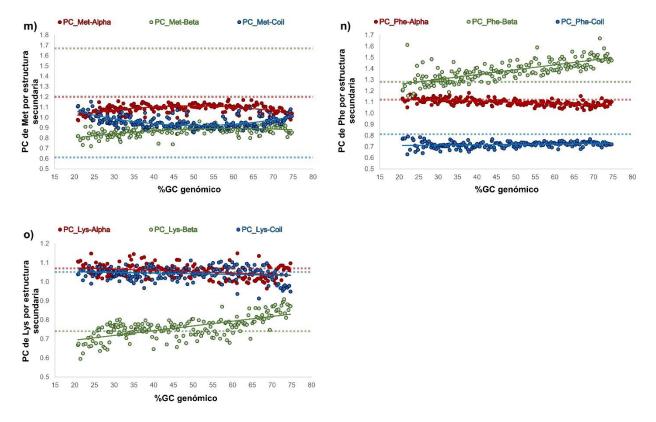

|                       | COG0002 COG3228 |         |         |                |         |         |        |         |                |         |
|-----------------------|-----------------|---------|---------|----------------|---------|---------|--------|---------|----------------|---------|
| Estructura secundaria | m               | b       | R       | R <sup>2</sup> | p-value | m       | b      | R       | R <sup>2</sup> | p-value |
| Alfa hélice           | -0.0064         | 33.2253 | -0.0668 | 0.0045         | 0.0758  | -0.1321 | 61.044 | -0.5251 | 0.2757         | <0.001  |
| Beta plegada          | 0.0045          | 20.7689 | 0.0807  | 0.0065         | 0.0318  | 0.0062  | 9.9318 | 0.0705  | 0.0050         | 0.2780  |
| Lazo                  | 0.0019          | 45.9894 | 0.0179  | 0.0003         | 0.6348  | 0.1258  | 29.011 | 0.4958  | 0.2458         | <0.001  |


# **Figuras Complementarias**








S1 Figure. Sesgo del contenido de GC genómico sobre las frecuencias de aminoácidos del proteoma y sobre las estructuras secundarias de las proteínas. La frecuencia de los aminoácidos del proteoma, así como el contenido de GC de sus codones (a.1-q.1) y la frecuencia de los aminoácidos en las estructuras secundarias de las proteínas, así como los parámetros conformacionales descritos por Chou y Fasman<sup>2,3</sup> (a.2-q.2) son presentados.







**S2** Figure. Sesgo del contenido de GC genómico sobre los parámetros conformacionales (PC) de los aminoácidos por estructura secundaria de los proteomas. Los valores de PC de los aminoácidos en hélice alfa (círculos rojos), hoja beta (círculos verdes) y lazos (círculos azules) son evaluados en función al contenido de GC genómico. Las líneas de regresión de las estructuras secundarias son representadas por líneas sólidas, mientras que los valores de PC reportados por Chou y Fasman<sup>2,3</sup> son representados por líneas punteadas (en rojo para hélice alfa, en verde para hoja beta y azul para lazo).

## N-terminal

| 1  | 20 smg-SMGWSS 110         | CEEEEEECCCCHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH       |
|----|---------------------------|---------------------------------------------------|
| 2  | 26 bhy-BHWA1 00539        | CEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEEE               |
| 3  | 27 bapu-BUMPUSDA CDS00541 | CCEEEEECCCCHHHHHHHHHHHCCCCEEEEEEECCCCCCC          |
| 4  | 28 cdf-CD630 20340        | CCCEEEEECCCCHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH       |
| 5  | 29 icp-ICMP 025           | CEEEEEECCCCHHHHHHHHHHHHCCCCEEEEEEECCCCCC          |
| 6  | 30 dtn-DTL3 1460          | CEEEEECCCCHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH        |
| 7  | 31 amar-AMRN 0825         | CEEEEECCCCHHHHHHHHHHHCCCCEEEEEE                   |
| 8  | 32_erg-ERGA_CDS_08180     | CCCCEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHHHCH |
| 9  | 33_csr-Cspa_c07990        | CEEEEEECCCCHHHHHHHHHHHCCCEEEEEEEECCCCCCEHHHHCH    |
| 10 | 34 elv-FNIIJ 111          | CCEEEEECCCCHHHHHHHHHHHHCCCEEEEEECCCCCCCEHHH       |
| 11 | 35 aman-B6F84 08265       | CCEEEEECCCCHHHHHHHHHHHCCCEEEEEEEECCCCCCEHHH       |
| 12 | 36 apib-G8C43 08245       | CCCEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH    |
| 13 | 37 cst-CLOST 0139         | CCEEEEECCCCHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHHHCH    |
| 14 | 38 bths-CNY62 02780       | CEEEEECCCCHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH         |
| 15 | 39 iag-Igag 1754          | CCCEEEEEECCCCHHHHHHHHHHHHCCCEEEEEEEE              |
| 16 | 40 acd-AOLE 08265         | CEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEECCCCCCEEHHH      |
| 17 | 41 aar-Acear 1552         | CEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEE.               |
| 18 | 42 cdiv-CPM 0548          | CEEEEEECCCCHHHHHHHHHHHHCCCEEEEEEEECCCCCCEHHH      |
| 19 | 43 enn-FRE64 00255        | CCCCCCEEEEEECCCCHHHHHHHHHHHHCCCEEEEEEEE           |
| 20 | 44_aalg-AREALGSMS7_00808  | CCEEEEECCCCHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH       |
| 21 | 45 bc1-ABC2558            | CEEEEECCCCHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH        |
| 22 | 46 acy-Anacy 2677         | CCCCCEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH  |
| 23 | 47 ava-Ava 3516           | CCCCCCEEEEEECCCCHHHHHHHHHHHHCCCEEEEEEEE           |
| 24 | 48 bif-N288 07475         | E                                                 |
| 25 | 49 elim-B2M23 17620       | CEEEEECCCCHHHHHHHHHHHHCCCEEEEEECCCCCCCEHHH        |
| 26 | 50_bbe-BBR47_53030        | CEEEEECCCCHHHHHHHHHHHHCCCEEEEEEE.                 |
| 27 | 51 amr-AM1 0609           | CCCCCCEEEEECCCCHHHHHHHHHHHHCCCEEEEEEECCCCCEEHHH   |
| 28 | 52 alr-DS731 18710        | CEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEECCCCCCC          |
| 29 | 53 atm-ANT 12400          | CCEEEEEECCCCHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH      |
| 30 | 54 caby-Cabys 3149        | CCCEEEEEECCCCHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH      |
| 31 | 55 ahn-NCTC12129 04811    | CCEEEEECCCCHHHHHHHHHHHHCCCCEEEEEECCCCCCC          |
| 32 | 56 enc-ECL 05030          | CEEEEEECCCCHHHHHHHHHHHHCCCCEEEEEECCCCCCC          |
| 33 | 57 agg-HRU87 04435        | CCEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH     |
| 34 | 58 aprs-BI364 03645       | CCCCCCCCEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEE          |
| 35 | 59 cag-Cagg 3596          | CCEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEECCCCCEEHHH     |
| 36 | 60_cap-CLDAP_16910        | CCEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEECCCCCCEEHHH     |
| 37 | 61 adg-Adeg 1833          | CEEEEEECCCCHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH       |
| 38 | 62 ddt-AAY81 01845        | CCEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEECCCCCCEEHHH    |
| 39 | 63 ahy-AHML 03040         | CEEEEEECCCCCHHHHHHHHHHHHHCCCCEEEEEEECCCCCC        |
| 40 | 64 max-MMALV 06140        | CCEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEECCCCCCCHHH     |
| 41 | 65 boh-AKI39 02980        | CCCCCCCCEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEE          |
| 42 | 66 axy-AXYL 00663         | CCCCCCCCEEEEEECCCCCHHHHHHHHHHHHHCCCEEEEEE         |
| 43 | 67_nbg-DV706_07695        | CCCCCCEEEEEECCCCCHHHHHHHHHHHHHCCCEEEEEEE          |
| 44 | 68 azl-AZL a00330         | CCCCCCCCCCCEEEEEECCCCCHHHHHHHHHHHHHCCCEEEEEE      |
| 45 | 69 abac-LuPra 00731       | E                                                 |
| 46 | 70 ach-Achl 1497          | CCEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH     |
| 47 | 71_aey-CDG81_09890        | CCEEEEEECCCCHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH      |
| 48 | 72_amyy-YIM_31495         | CCCCEEEEEECCCCCHHHHHHHHHHHHHCCCEEEEEEEE           |
| 49 | 73_brx-BH708_07090        | C-CCEEEEEECCCCHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH    |
| 50 | 74_ank-AnaeK_0180         | CCCCCCEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH |
| 51 | 75_agg-C1N71_09310        | CCEEEEEECCCCHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH      |
| 52 | 76_atl-Athai_30770        | CCEEEEEECCCCHHHHHHHHHHHHHCCCEEEEEEECCCCCCEHHH     |
| 53 | 77_mcab-HXZ27_20325       | CCEEEEEECCCCHHHHHHHHHHHHCCCEEEEEECCCCCCCCHHH      |
|    |                           |                                                   |

#### Fig S3. Continuación...

```
20 smg-SMGWSS 110
         26 bhy-BHWA1 00539
57
 27 bapu-BUMPUSDA CDS00541
         28_cdf-CD630_20340
         58
59
 29 icp-ICMP 025
         60
 30 dtn-DTL3 1460
         31_amar-AMRN_0825
         61
 32 erg-ERGA CDS 08180
         62
 33 csr-Cspa c07990
         63
64
 34_elv-FNIIJ_111
         65
 35 aman-B6F84 08265
         36_apib-G8C43_08245
         66
 37_cst-CLOST_0139
        67
 38 bths-CNY62 02780
        68
69
 39_iag-Igag_1754
         70
 40 acd-AOLE 08265
        71
 41_aar-Acear_1552
         72
 42_cdiv-CPM_0548
73
 43 enn-FRE64 00255
         74
75
 45 bcl-ABC2558
         76
 46_acy-Anacy_2677
77
         47_ava-Ava_3516
78
 48 bif-N288 07475
         79
 49 elim-B2M23 17620
         80
 50 bbe-BBR47 53030
         51_amr-AM1_0609
         81
         82
 52 alr-DS731 18710
83
 53_atm-ANT_12400
         54 caby-Cabys 3149
         84
85
 56 enc-ECL 05030
         57_aqg-HRU87_04435
         86
         87
 58 aprs-BI364 03645
 59_cag-Cagg_3596
         88
89
 60 cap-CLDAP 16910
         90
 61 adg-Adeg 1833
       91
 63_ahy-AHML_03040
92
 64_max-MMALV_06140
         93
 65_boh-AKI39_02980
         94
 66_axy-AXYL_00663
         95
 67 nbg-DV706 07695
         96
 68_azl-AZL_a00330
         97
 69_abac-LuPra_00731
98
 70_ach-Achl_1497
         99
 71_aey-CDG81_09890
         100
 72 amyy-YIM 31495
        73_brx-BH708_07090
        101
         74_ank-AnaeK_0180
103
 75_agg-C1N71_09310
        76_atl-Athai_30770
104
         105 77 mcab-HXZ27 20325
```

## Fig S3. Continuación...

| 107 | 20 smg-SMGWSS 110         | ССССССССНИНИНИНИСССССС         | ccc         | ннннн     |
|-----|---------------------------|--------------------------------|-------------|-----------|
| 108 | 26 bhy-BHWA1 00539        | СССССССНИННИННССССССНИННИНСССЕ |             |           |
| 109 | 27 bapu-BUMPUSDA CDS00541 | ССССССССНИННИННИССССССНИННИН   | cccccc      | ннннннн   |
| 110 | 28 cdf-CD630 20340        | ССССССССНИНИНИНИССССССИНИНИН   | cccccc      | ннннннн   |
| 111 | 29 icp-ICMP 025           | ССССССССНИНИНИНИССССССНИНИНИ   | cccccc      | ннннннн   |
| 112 | 30 dtn-DTL3 1460          | ссссссснинининссссссснинис     | ccccccc     | СССНИНН   |
| 113 | 31 amar-AMRN 0825         | СССССССННИНИННССССССИНИННН     |             |           |
| 114 | 32 erg-ERGA CDS 08180     | СССССССНИННИНННСССССНИННСС     |             |           |
| 115 | 33 csr-Cspa c07990        | ССССССССНИННИНННССССССССНИНСС  | cccccc      | ннннннн   |
| 116 | 34 elv-FNIIJ 111          | ССССССССНИННИНСССССССС         |             |           |
| 117 | 35 aman-B6F84 08265       | СССССССНИННИННИССССССИННИНН    |             |           |
| 118 | 36 apib-G8C43 08245       | ССССССССНИННИНСССССССС         |             |           |
| 119 | 37 cst-CLOST 0139         | ссссссснинининссссссининин     |             |           |
| 120 | 38 bths-CNY62 02780       | ССССССССНИНИНИНИССССССИНИНИН   |             |           |
| 121 | 39 iag-Igag 1754          | ССССССССНИННИННИССССССИННИНН   |             |           |
| 122 | 40 acd-AOLE 08265         | ССССССССНИННИННИССССССИННИНН   |             |           |
| 123 | 41 aar-Acear 1552         | ССССССССНИННИННИССССССНИННИС   |             |           |
| 124 | 42 cdiv-CPM 0548          | СССССССНИННИННИССССССИННИНН    |             |           |
| 125 | 43 enn-FRE64 00255        | ССССССССНИНИНИНИССССССНИНИНИ   |             |           |
| 126 | 44 aalg-AREALGSMS7 00808  | ССССССССНИННИН                 |             |           |
| 127 | 45 bc1-ABC2558            | ССССССССНИННИННИССССССНИННИН   |             |           |
| 128 | 46_acy-Anacy_2677         | СССССССНИННИННССССССНИННИН     |             |           |
| 129 | 47 ava-Ava 3516           | ССССССССНИННИННИССССССНИННИН   |             |           |
| 130 | 48 bif-N288 07475         | СССССССНИННИН-ССССССНИННИН     |             |           |
| 131 | 49 elim-B2M23 17620       | ССССССССНИННИННИССССССНИННИН   |             |           |
| 132 | 50 bbe-BBR47 53030        | СССССССНИННИННССССССНИННИН     |             |           |
| 133 | 51 amr-AM1 0609           | СССССССНИННИННЕССССССИННИНН    |             |           |
| 134 | 52 alr-DS731 18710        | ССССССССНИННИННИССССССНИННИН   |             |           |
| 135 | 53 atm-ANT 12400          | ССССССССНИННИННИССССССНИННИН   |             |           |
| 136 | 54_caby-Cabys_3149        | СССССССНИННИННССССССНИННИН     |             |           |
| 137 | 56 enc-ECL 05030          | ССССССССНИННИННИССССССИННИНН   |             |           |
| 138 | 57 agg-HRU87 04435        | ССССССССНИНИНИНИСССССС         |             |           |
| 139 | 58 aprs-BI364 03645       | ССССССССНИНИНИНИССССССНИНИНИ   |             |           |
| 140 | 59 cag-Cagg 3596          | ССССССССНИНИНИННСССССССИНИНИН  | cccccc      | СССНННН   |
| 141 | 60 cap-CLDAP 16910        | ссссссснинининсссссснинин      |             |           |
| 142 | 61 adg-Adeg 1833          | ССССССССНИННИННИССССССИННИНН   | cccccc      | ннсниннн  |
| 143 | 63 ahy-AHML 03040         | ССССССССНИНИНИНИССССССИНИНИН   |             |           |
| 144 | 64 max-MMALV 06140        | ССССССССНИНИНИНИССССССИНИНИН   |             |           |
| 145 | 65 boh-AKI39 02980        | ССССССССНИНИНИНИССССССИНИНИН   | CCCCCC      | ннсниннн  |
| 146 | 66 axy-AXYL 00663         | ССССССССНИНИНИНИСССССССНИНИН   | CCCCCC      | ннннннн   |
| 147 | 67 nbg-DV706 07695        | ССССССССНИНИНИНИСССССИНИНИН    | CCCCCC      | ннннннн   |
| 148 | 68 az1-AZL a00330         | ССССССССНИНИНИНИССССССНИНИНИ   | CCCCCC      | ннннннн   |
| 149 | 69 abac-LuPra 00731       | ССССССССНИНИНИНИССССИНИНИН     | cccccc      | СССНННН   |
| 150 | 70 ach-Achl 1497          | ССССССССНИННИННИССССССС        |             |           |
| 151 | 71 aey-CDG81 09890        | ССССССССНИННИНННССССССС        |             |           |
| 152 | 72 amyy-YIM 31495         | СССССССНИННИННИСССССС          |             |           |
| 153 | 73 brx-BH708 07090        | ССССССССНИННИНННССССССС        | CCCCECCCCCC | нниннинни |
| 154 | 74 ank-AnaeK 0180         | СССССССНИННИНННССССССИННИНН    | CCCCCC      | СССНННН   |
| 155 | 75 agg-C1N71 09310        | ССССССССНИННИНННССССССС        |             |           |
| 156 | 76 atl-Athai 30770        | ССССССССННИНИНННССССССС        | ccccccccc   | СНИННИН   |
| 157 | 77 mcab-HXZ27 20325       | ССССССССННИНИНННССССССС        | ccccccccc   | СНИННИН   |
|     |                           |                                |             |           |

Fig S3. Continuación...

| 159 | 20 smg-SMGWSS 110                     | CCCEEECCCCHHHHHHHHHHHHHHHCCCCCCCEEEEEECCCCCCCC     |
|-----|---------------------------------------|----------------------------------------------------|
| 160 | 26 bhy-BHWA1 00539                    | HCCEEECCCCHHHHHHHHHHHHHHCCCCCCEEEEEEECCCCCCCC      |
| 161 | 27 bapu-BUMPUSDA CDS00541             | CCCEECCCCHHHHHHHHHHHHHH-CCCCCCCCEEEEEEECCCCCCCC    |
| 162 | 28 cdf-CD630 20340                    | CCCEECCCCHHHHHHHHHHHHHH—-CCCCCCEEEEEECCCCCCCCCC    |
| 163 | 29 icp-ICMP 025                       | CCCEECCCCHHHHHHHHHHHHHHHHCCCCCCCCEEEEEECCCCCC      |
| 164 | 30 dtn-DTL3 1460                      | CCCEEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC  |
| 165 | 31 amar-AMRN 0825                     | CCCEECCCCHHHHHHHHHHHHH——CCCCCCCEEEEEEECCCCCCCC     |
| 166 | 32_erg-ERGA_CDS_08180                 | CCCEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC   |
| 167 | 33 csr-Cspa c07990                    | CCCEEECCCCHHHHHHHHHHHHHHCCCCCCEEEEEEECCCCCCCC      |
| 168 | 34 elv-FNIIJ 111                      | CCCEECCCCHHHHHHHHHHHHH——CCCCCCCEEEEEEECCCCCCCC     |
| 169 | 35 aman-B6F84 08265                   | CCCEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC   |
| 170 | 36 apib-G8C43 08245                   | CCCEEECCCCHHHHHHHHHHHHHHH——CCCCCCEEEEEEECCCCCCCC   |
| 171 | 37 cst-CLOST 0139                     | CCCEEECCCCHHHHHHHHHHHHHH——CCCCCCCEEEEEECCCCCCCC    |
| 172 | 38 bths-CNY62 02780                   | CCCEEECCCCHHHHHHHHHHHHHH———CCCCCCEEEEEECCCCCCCC    |
| 173 | 39 iag-Igag 1754                      | CCCEEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEECCCCCCCCCC   |
| 174 | 40 acd-AOLE 08265                     | CCCEEECCCCHHHHHHHHHHHHHHHHCCCCCCCCEEEEEE           |
| 175 | 41 aar-Acear 1552                     | CCCEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC   |
| 176 | 41_aa1-Acea1_1332<br>42 cdiv-CPM 0548 | CCCEEECCCCHHHHHHHHHHHHH——CCCCCCCEEEEEEECCCCCCCC    |
| 177 | 43 enn-FRE64 00255                    | CCCEEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC  |
| 178 | 44 aalg-AREALGSMS7 00808              | CCCEEECCCCHHHHHHHHHHHHH——CCCCCCCEEEEEEECCCCCCCC    |
| 179 | 45 bc1-ABC2558                        | CCCEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC   |
| 180 | 46 acy-Anacy 2677                     | CCCEEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC  |
| 181 | 47 ava-Ava 3516                       | CCCEEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC  |
| 182 | 48 bif-N288 07475                     | CCCEEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC  |
| 183 | 49 elim-B2M23 17620                   | CCCEEECCCCHHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC |
| 184 | 50 bbe-BBR47 53030                    | CCCEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC   |
| 185 | 51 amr-AM1 0609                       | CCCEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC   |
| 186 | 52 alr-DS731 18710                    | CCCEECCCCHHHHHHHHHHHHHH-CCCCCCCCEEEEEEECCCCCCCC    |
| 187 | 53 atm-ANT 12400                      | CCCEEECCCCHHHHHHHHHHHHHHHHCCCCCCCCEEEEEE           |
| 188 | 54 caby-Cabys 3149                    | CCCEECCCCHHHHHHHHHHHHHHCCCCCCCEEEEEECCCCCCCC       |
| 189 | 56 enc-ECL 05030                      | CCCEECCCCHHHHHHHHHHHHHHHHCCCCCCCCEEEEEECCCCCC      |
| 190 | 57 agg-HRU87 04435                    | CCCEECCCCHHHHHHHHHHHHHH—-CCCCCCCEEEEEECCCCCCCCCC   |
| 191 | 58 aprs-BI364 03645                   | CCCEECCCCHHHHHHHHHHHHHH—-CCCCCCCEEEEEECCCCCCCCCC   |
| 192 | 59 cag-Cagg 3596                      | CCCEECCCCHHHHHHHHHHHHHHH-CCCCCCCEEEEEECCCCCCCC     |
| 193 | 60 cap-CLDAP 16910                    | CCCEECCCCHHHHHHHHHHHHHH——CCCCCCCEEEEEECCCCCCCC     |
| 194 | 61 adg-Adeg 1833                      | CCCEECCCCHHHHHHHHHHHHHH—-CCCCCCEEEEEECCCCCCCCCC    |
| 195 | 63 ahy-AHML 03040                     | CCCEEECCCCHHHHHHHHHHHHHHHHHCCCCCCCCEEEEEE          |
| 196 | 64 max-MMALV 06140                    | CCCEEECCCCHHHHHHHHHHHHH——CCCCCCEEEEEEECCCCCCCC     |
| 197 | 65 boh-AKI39 02980                    | CCCEECCCCHHHHHHHHHHHHHHHCCCCCCCCCEEEEEECCCCCC      |
| 198 | 66 axy-AXYL 00663                     | CCCEEECCCCHHHHHHHHHHHHHHHCCCCCCCCCEEEEEE           |
| 199 | 67 nbg-DV706 07695                    | CCCEEECCCCHHHHHHHHHHHHH-CCCCCCCCEEEEEEECCCCCCCC    |
| 200 | 68 azl-AZL a00330                     | CCCEEECCCCHHHHHHHHHHHHHH——CCCCCCCEEEEEEECCCCCCCC   |
| 201 | 69 abac-LuPra 00731                   | CCCEECCCCHHHHHHHHHHHHHH——CCCCCCCEEEEEECCCCCCCC     |
| 202 | 70 ach-Achl 1497                      | CCCEEECCCCHHHHHHHHHHHHHH——CCCCCCCEEEEEEECCCCCCCC   |
| 203 | 71 aey-CDG81 09890                    | CCCEECCCCHHHHHHHHHHHHHH——CCCCCCCEEEEEECCCCCCCC     |
| 204 | 72 amyy-YIM 31495                     | CCCEECCCCHHHHHHHHHHHHHH——CCCCCCCEEEEEECCCCCCCC     |
| 205 | 73 brx-BH708 07090                    | CCCEEECCCCHHHHHHHHHHHHH—-CCCCCCCEEEEEECCCCCCCCCC   |
| 206 | 74 ank-AnaeK 0180                     | CCCEEECCCCHHHHHHHHHHHHH——CCCCCCCEEEEEEECCCCCCCC    |
| 207 | 75 agg-C1N71 09310                    | CCCEECCCCHHHHHHHHHHHHHH—-CCCCCCCEEEEEECCCCCCCCCC   |
| 208 | 76 atl-Athai 30770                    | CCCEECCCCHHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC  |
| 209 | 77 mcab-HXZ27 20325                   | CCCEECCCCHHHHHHHHHHHHHH—-CCCCCCCEEEEEEECCCCCCCCCC  |
| 200 |                                       | 33222333                                           |

Fig S3. Continuación...

```
20_smg-SMGWSS_110
          212
 26_bhy-BHWA1_00539
213
          27 bapu-BUMPUSDA CDS00541
 28 cdf-CD630 20340
          214
215
 29 icp-ICMP 025
          216
 30 dtn-DTL3 1460
          217
 31 amar-AMRN 0825
 32_erg-ERGA_CDS_08180
          218
219
 33 csr-Cspa c07990
          220
 34 elv-FNIIJ 111
          221
 35_aman-B6F84_08265
          222
 36 apib-G8C43 08245
223
 37_cst-CLOST_0139
          38 bths-CNY62 02780
          CCCCE----CCCCCCCCHHHHHHHHHH--CCCCCEEEEEEECCCCCEEEEEE----
224
225
 39 iag-Igag 1754
          226
 40_acd-AOLE_08265
          41 aar-Acear 1552
          42_cdiv-CPM_0548
          228
229
 43 enn-FRE64 00255
          230
 44 aalg-AREALGSMS7 00808
          231
 45_bc1-ABC2558
          46_acy-Anacy_2677
233
          47 ava-Ava 3516
234
 48_bif-N288_07475
          235
 49 elim-B2M23 17620
          50_bbe-BBR47_53030
236
          CCCCC----CCCCCCCHHHHHHHHHHH--HCCCCEEEEEEECCCCEEEEEEE--
          237
 51_amr-AM1_0609
238
 52 alr-DS731 18710
          239
 53_atm-ANT_12400
          240
 54 caby-Cabys 3149
          241
 56_enc-ECL_05030
          242
 57_aqg-HRU87_04435
243
 58 aprs-BI364 03645
          244
 59 cag-Cagg 3596
          245
 60 cap-CLDAP 16910
          246
 61_adg-Adeg_1833
247
 63_ahy-AHML_03040
          248
 64 max-MMALV 06140
249
 65 boh-AKI39 02980
          250
 66 axy-AXYL 00663
          67_nbg-DV706_07695
          251
          252
 68 azl-AZL a00330
253
 69 abac-LuPra 00731
          254
 70 ach-Achl 1497
          255
 71_aey-CDG81_09890
          256
          72_amyy-YIM_31495
257
 73 brx-BH708 07090
          258
 74_ank-AnaeK_0180
259
 75_agg-C1N71_09310
          260
 76 atl-Athai 30770
          261 77_mcab-HXZ27_20325
```

Fig S3. Continuación...

| 263 | 20 smg-SMGWSS 110         | CCCCCHHHHHHHHHHHHCCCCEEECCCCCCHHHCCCCCEEEEEEEE         |
|-----|---------------------------|--------------------------------------------------------|
| 264 | 26 bhy-BHWA1 00539        | CCCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCCHHHCCCCCEEEEEEEE     |
| 265 | 27 bapu-BUMPUSDA CDS00541 | -CCCCCHHHHHHHHHHHCCCCCEEECCCCCCCCHHHCCCCCEEEEEEEE      |
| 266 | 28 cdf-CD630 20340        | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCCCC                   |
| 267 | 29 icp-ICMP 025           | -CCCCCHHHHHHHHHHHCCCCEEEECCCCCCCHHHCCCCCCEEEEEEE       |
| 268 | 30 dtn-DTL3 1460          | -CCCCCCHHHHHHHHHHCCCCCEEEEC                            |
| 269 | 31 amar-AMRN 0825         | -CCCCCHHHHHHHHCCCCCEEECCCCCCHHHCCCCCCEEEEEEE           |
| 270 | 32 erg-ERGA CDS 08180     | -CCCCCHHHHHHHHHHHCCCCCEEECCCCCCCHHHCCCCCEEEEEEEE       |
| 271 | 33 csr-Cspa c07990        | -CCCCCCHHHHHHHHHHCCCCCEEEEC                            |
| 272 | 34 elv-FNIIJ 111          | CCCCHHHHHHHHHHCCCCCEEECCCCCCHHHCCCCCEEEEEEEE           |
| 273 | 35 aman-B6F84 08265       | -CCCCCHHHHHHHHHHCCCCCEEEECCCCCCCCCHHHCCCCCEEEEEEEE     |
| 274 | 36 apib-G8C43 08245       | -CCCCCHHHHHHHHHHHCCCCEEECCCCCCCHHHCCCCCEEEEEEE         |
| 275 | 37 cst-CLOST 0139         | -CCCCCHHHHHHHHHHHCCCCEEEECCCCCCCCCHHCCCCCEEEEEEE       |
| 276 | 38 bths-CNY62 02780       | -CCCCCCHHHHHHHHHHCCCCEEEEC                             |
| 277 | 39 iag-Igag 1754          | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCCCHHHCCCCCEEEEEEE     |
| 278 | 40 acd-AOLE 08265         | -CCCCCHHHHHHHHHHCCCCCEEEECCCCCCCHHHCCCCCEEEEEEEC       |
| 279 | 41 aar-Acear 1552         | -CCCCCHHHHHHHHHHCCCCCEEEEC                             |
| 280 | 42 cdiv-CPM 0548          | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCCCCCHHHCCCCCEEEEEE    |
| 281 | 43 enn-FRE64 00255        | CCCCCCHHHHHHHHHHCCCCCEEEEC                             |
| 282 | 44 aalg-AREALGSMS7 00808  | CCCHHHHHHHHHHCCCCCEEECCCCCCHHCCCCCEEEEEEEE             |
| 283 | 45 bc1-ABC2558            | -CCCCCCHHHHHHHHHHCCCCEEEECCCCCCCCHHHCCCCCEEEEEEEE      |
| 284 | 46 acy-Anacy 2677         | CCCCCCHHHHHHHHHHCCCCCEEEECCCCCCCHHHCCCCCEEEEEEECC      |
| 285 | 47 ava-Ava 3516           | CCCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCCHHHCCCCCEEEEEEECC    |
| 286 | 48 bif-N288 07475         | -CCCCCHHHHHHHHHHHCCCCEEEEECCCCCCCCHHHCCCCCEEEEEEEE     |
| 287 | 49 elim-B2M23 17620       | -CCCCCCHHHHHHHHHHCCCCCEEEC                             |
| 288 | 50 bbe-BBR47 53030        | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCCHHHHCCCCEEEEEEEE     |
| 289 | 51 amr-AM1 0609           | CCCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCHHHCCCCCCEEEEEECC     |
| 290 | 52 alr-DS731 18710        | -CCCCCHHHHHHHHHHHCCCCEEEEC                             |
| 291 | 53 atm-ANT 12400          | -CCCCCHHHHHHHHHHHCCCCCEEEEECCCCCCCCCCHHHCCCCCEEEEEE    |
| 292 | 54 caby-Cabys 3149        | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCCCCHHHCCCCCEEEEEE     |
| 293 | 56 enc-ECL 05030          | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCHHHCCCCCEEEEEEEE       |
| 294 | 57 agg-HRU87 04435        | -CCCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCHHHCCCCCCEEEEEEEE    |
| 295 | 58 aprs-BI364 03645       | -CCCCCHHHHHHHHCCCCCEEEECCCCCCCHHHCCCCCEEEEEEEE         |
| 296 | 59 cag-Cagg 3596          | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCCCCHHHCCCCCEEEEEE     |
| 297 | 60 cap-CLDAP 16910        | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCHHHCCCCCCEEEEEEECCCCC |
| 298 | 61 adg-Adeg 1833          | -CCCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCHHHCCCCCEEEEEEEE     |
| 299 | 63 ahy-AHML 03040         | -CCCCCCHHHHHHHHHHHCCCCCEEECCCCCCCHHHCCCCCCEEEEEEC      |
| 300 | 64 max-MMALV_06140        | -CCCCCHHHHHHHHHHHCCCCCEEECCCCCHHHCCCCCEEEEEEEE         |
| 301 | 65 boh-AKI39 02980        | -CCCCCHHHHHHHHHHHCCCCEEEECCCCCCCCHHHCCCCCCEEEEEEEE     |
| 302 | 66 axy-AXYL 00663         | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCHHHCCCCCCEEEEEEEC     |
| 303 | 67_nbg-DV706_07695        | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCCCCHHHCCCCCEEEEEE     |
| 304 | 68_azl-AZL_a00330         | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCHHHCCCCCEEEEEEEE      |
| 305 | 69_abac-LuPra_00731       | -CCCCCHHHHHHHHHHHCCCCCEEECCCCCCCHHHCCCCCEEEEEEEE       |
| 306 | 70_ach-Ach1_1497          | -CCCCCHHHHHHHHHHHCCCCEEEEECCCCCCCHHHHCCCCCEEEEEEEC     |
| 307 | 71_aey-CDG81_09890        | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCHHHCCCCCCEEEEEEEC     |
| 308 | 72_amyy-YIM_31495         | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCHHHHCCCCCEEEEEEEC     |
| 309 | 73_brx-BH708_07090        | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCHHHCCCCCEEEEEEEE      |
| 310 | 74_ank-AnaeK_0180         | -CCCCCHHHHHHHHHHHCCCCCEEECCCCCCCHHHCCCCCCEEEEEEE-CCCC  |
| 311 | 75_agg-C1N71_09310        | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCHHHCCCCCEEEEEEEE      |
| 312 | 76_atl-Athai_30770        | -CCCCCHHHHHHHHHHHCCCCCEEEECCCCCCCHHHHCCCCCEEEEEEEC     |
| 313 | 77_mcab-HXZ27_20325       | CCCHHHHHHHHHHHCCCCCEEEECCCCCCCHHHHCCCCCEEEEEEECC       |

Fig S3. Continuación...

```
20_smg-SMGWSS_110
             316
317
  28_cdf-CD630_20340
            318
 319
  29 icp-ICMP 025
             321
322
323
324
325
326
327
328
329
330
331
332
334
         335
336
  46 acy-Anacy 2677
 337
  47_ava-Ava_3516
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
365 77 mcab-HXZ27 20325
```

C-terminal

Fig S3. Alineamiento múltiple de los elementos de estructura secundaria de las proteínas del COG0002 con respecto al contenido de GC de sus genes. El formato de alineamiento se divide en dos partes: la primera parte de lado izquierdo refleja el valor (orden ascendente) del contenido de GC de los genes que codifican a las proteínas del COG, seguido del nombre del gen; la segunda parte muestra el alineamiento de las secuencias de estructuras secundarias: H para hélice alfa, E para hoja beta, y C para lazo.

# N-terminal

| 1  | 27_tje-TJEJU_2162    | ННННННННННННННННННННННННН                          |
|----|----------------------|----------------------------------------------------|
| 2  | 28 prn-BW723 13825   | СНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИ                |
| 3  | 30 aqb-D1818 09550   | СССССЕЕЕЕЕСССССССНИНИННИНИННИННИННИННИННИННИННИННИ |
| 4  | 31 laci-CW733 06300  | СНИННИННИННИННИННИННИННИНС                         |
| 5  | 36 cep-Cri9333 2611  | ССНИННИННИННИННИННИННИННИННИННИН                   |
| 6  | 37 ava-Ava 0677      | СССНИННИННИНИНИННИНИНИНИНИНИНИНИН                  |
| 7  | 40 cthe-Chro 1359    | СССНИННИННИНИНИННИНИНИНИНИНИНИНИН                  |
| 8  | 41_ptn-PTRA_a1372    | СНИНИННИНИНИНИНИНИНИНИНИНИНИНИНИНИН                |
| 9  | 42_zga-ZOBELLIA_2563 | ССССССНИНИННИНИНИНИНИНИНИНИНИНИНИНИ                |
| 10 | 45_rhh-E0Z06_01765   | СНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИ                |
| 11 | 46_pko-PKOR_15130    | СНИННИННИННИННИННИННИННИННИННИН                    |
| 12 | 49_nii-Nit79A3_3401  | ССНИННИННИНН                                       |
| 13 | 50_ifl-C1H71_04530   | СНИННИННИННИННИННИННИННИН                          |
| 14 | 53_mpsy-CEK71_12595  | ССНИННИННИННН                                      |
| 15 | 57_dal-Dalk_5292     | СССНИННИННИН                                       |
| 16 | 62_pol-Bpro_2870     | СССНННННННННС                                      |
| 17 | 63_eba-ebA6530       | СССНННННННННС                                      |
| 18 | 64_adi-B5T_02407     | СНИННИННИННН                                       |
| 19 | 65_haz-A9404_06910   | СССССННННННННННН                                   |
| 20 | 66_bfz-BAU07_18345   | СССССССССНННННННН                                  |
| 21 | 69_csa-Csal_2711     | ССНННННСС                                          |
| 22 | 71_pmex-H4W19_15985  | CCCHHHHC                                           |
|    |                      |                                                    |

# Continuación...

| 24 | 27 tje-TJEJU 2162   | -СССССНИНИНИННИНННСКС-НИНИНИННИНННИНННИНСЕЕЕЕЕССЕЕ-СИНИНИН  |
|----|---------------------|-------------------------------------------------------------|
| 25 | 28 prn-BW723 13825  | -СССССНИНИНИНННИСНИННССС-ИНИНИНИННИНННИН                    |
| 26 | 30 aqb-D1818 09550  | СССССССНИНИНИННЕННИССС-ИНИНИНИННИНИННИНСЕЕЕЕСССЕЕССИНИНИН   |
| 27 | 31 laci-CW733 06300 | -СССССНИНИНИНННИСИНИНССС-ИНИНИНИНИНИНИНИ                    |
| 28 | 36 cep-Cri9333 2611 | -сссссининининининиссс-инининининининин                     |
| 29 | 37 ava-Ava 0677     | -ссссснининининснинсссс-инининининининин                    |
| 30 | 40 cthe-Chro 1359   | -сссссининининининсссс-инининининининин                     |
| 31 | 41 ptn-PTRA a1372   | -СССССНИНИНИНННИСНИНИССС-ИНИНИНИНИНИНИНИ                    |
| 32 | 45 rhh-E0Z06 01765  | -СССССНИНИНИННИНННССС-ИНИНИНИННИНННИНСЕЕЕЕСССЕЕССИНИНИН     |
| 33 | 49 nii-Nit79A3 3401 | -сссссснинининненниссс-инининнинниннинсеееессссссининин     |
| 34 | 50 ifl-C1H71 04530  | -АСССССНИННИНННСИНННССС-ИНИННИННИННИНННИНСЕЕЕЕСССССССИННИНН |
| 35 | 53 mpsy-CEK71 12595 | ССССНИНИНИНННЕННСССС-ИНИНИНИННИНИНННИНСЕЕЕЕССССЕССИНИНИН    |
| 36 | 57_dal-Dalk_5292    | -сссссининининининсссс-инининининининиссетессссссининин     |
| 37 | 62_pol-Bpro_2870    | -СССССНИНИННИННСИНСССС-ИНИНИНИНИНИНИНИНИ                    |
| 38 | 63_eba-ebA6530      | -СССССНИНИНИНННИСИНИСССС-ИНИНИНИНИНИНИНИ                    |
| 39 | 64 adi-B5T 02407    | -СССССНИНИННИНСССССССС-ИНИНИНИНИНИНИНИНИ                    |
| 40 | 65 haz-A9404 06910  | -СССССНИНИНИНННИСИНСССС-ИНИНИНИНИНИНИНИН                    |
| 41 | 66 bfz-BAU07 18345  | -СССССНИНИНИНННИСИНИСССС-ИНИНИНИНИНИНИНИ                    |
| 42 | 69_csa-Csal_2711    | -СССССНИНИНИННИННСКССС-ИНИНИНИННИННИННИНСЕЕЕЕСССЕЕССИНИНИН  |
| 43 | 71_pmex-H4W19_15985 | -СССССНИНИНИНИНННИССС-ИНИНИНИНИНИНИНИНСЕЕЕЕССССЕССИНИНИН    |

# Fig S4. Continuación...

| 45 | 27 tje-TJEJU 2162   | AAAAHHHHHCCCCHHHCCCCEEEECCCCEECCEEECCCEEEECCECCC        |
|----|---------------------|---------------------------------------------------------|
| 46 | 28 prn-BW723 13825  | AAAAHHHHHHCCCHHHCCCCCEEEECCCCEEECCEEECCCCEEECCCCCCC     |
| 47 | 30 agb-D1818 09550  | AAAAHHHHHH———CCCHHHHCCCCEEEECCCCEE——ECCEEEECCCEECCCCE—— |
| 48 | 31 laci-CW733 06300 | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEECCCCEEEECCCCCC     |
| 49 |                     |                                                         |
|    | 36_cep-Cri9333_2611 | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEEECCEEECCCCCCCC     |
| 50 | 37_ava-Ava_0677     | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEEECCCEECCC          |
| 51 | 40_cthe-Chro_1359   | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEECCCEEECCC          |
| 52 | 41_ptn-PTRA_a1372   | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEECCCCEEECCC         |
| 53 | 45_rhh-E0Z06_01765  | AAAAHHHHHHCCCHHHCCCCCEEEECCCCEEECCEEECCCEECCC           |
| 54 | 49 nii-Nit79A3 3401 | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEECCCCEECCC          |
| 55 | 50 ifl-C1H71 04530  | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEECCCCEECCE          |
| 56 | 53 mpsy-CEK71 12595 | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEEECCCEECCCCCCCC     |
| 57 | 57_dal-Dalk_5292    | AAAAHHHHHHCCCHHHCCCCCEEEECCCCCCCCCCC                    |
| 58 | 62_pol-Bpro_2870    | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEECCCCEEEEECCEECC    |
| 59 | 63_eba-ebA6530      | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEEECCCEECCCCCECEE    |
| 60 | 64_adi-B5T_02407    | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEEECCCEECCCCCCCC     |
| 61 | 65_haz-A9404_06910  | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEECCCCECCCCEE        |
| 62 | 66_bfz-BAU07_18345  | AAAAHHHHHHCCCHHHHCCCCEEEECCCCEEECCEEEECCCEECCCCCCCE     |
| 63 | 69_csa-Csal_2711    | AAAAHHHHHHCCCCCCCHHHCCCCCEEEECCCCEEECCEEECCCCEEECCC     |
| 64 | 71_pmex-H4W19_15985 | AAAAHHHHHHCCCHHHCCCCCEEEECCCCEEECCEEECCCCEEECCCCCCCC    |

# Continuación...

| 66 | 27_tje-TJEJU_2162   | ССССССЕЕЕЕННИНИННССССССССНИНИННИНИННИННСССССССС |
|----|---------------------|-------------------------------------------------|
| 67 | 28_prn-BW723_13825  | ССССССЕЕЕЕННИНИННССССССССЕЕННИНИННИННСССССССС   |
| 68 | 30_aqb-D1818_09550  | EEEEHHHHHHHHHCCCCCCCEEHHHHHHHHHHHHCCCCCC        |
| 69 | 31_laci-CW733_06300 | СССССЕЕЕЕЕННИННИННССССССССНИННИННИННИННСССССССС |
| 70 | 36_cep-Cri9333_2611 | CCCCCEEEEEHHHHHHHHCCCCCCCCEEHHHHHHHHHH          |
| 71 | 37 ava-Ava 0677     | CCCCCCEEEEHHHHHHHHCCCCCCCCEEHHHHHHHHHH          |
| 72 | 40_cthe-Chro_1359   | ССССССЕЕЕЕННИННИНССССССССЕЕННИННИННИНСССССССС   |
| 73 | 41_ptn-PTRA_a1372   | CCCCCCEEEEHHHHHHHHCCCCCCCEEEEHHHHHHHHHH         |
| 74 | 45_rhh-E0Z06_01765  | ССССССЕЕЕЕННИННИНССССССССЕЕННИННИННИНСССССССС   |
| 75 | 49 nii-Nit79A3 3401 | CCCCCCEEEEHHHHHHCCCCCCCEEHHHHHHHHHHHH           |
| 76 | 50 ifl-C1H71 04530  | CCCCCEEEEEHHHHHHHHCCCCCCEEEHHHHHHHHHH           |
| 77 | 53 mpsy-CEK71 12595 | CCCCCCEEEEHHHHHHHHCCCCCCCCEEEHHHHHHHHHH         |
| 78 | 57_dal-Dalk_5292    | CCCCCCEEEEHHHHHHHHHCCCCCCEEEEHHHHHHHHHH         |
| 79 | 62_pol-Bpro_2870    | CCCCCCEEEEHHHHHHHHHCCCCCCEEEHHHHHHHHHH          |
| 80 | 63_eba-ebA6530      | GGCCCEEEEECHHHHHCCCCCCEEHHHHHHHHHHHH            |
| 81 | 64_adi-B5T_02407    | CCCCCCEEEEHHHHHHHHCCCCCCEEEHHHHHHHHHH           |
| 82 | 65_haz-A9404_06910  | CCCCCCEEEEHHHHHHHHCCCCCCCCEEEHHHHHHHHHH         |
| 83 | 66 bfz-BAU07 18345  | GCCCCCEEEEHHHHHCCCCCCEEEEHHHHHHHHHHH            |
| 84 | 69_csa-Csal_2711    | CCCCCEEEEEHHHHHHHCCCCCCEEHHHHHHHHHHHCCCCCCCC    |
| 85 | 71_pmex-H4W19_15985 | ССССССЕЕЕЕННИННИНССССССССЕЕ-НИНИННИННСССССССССС |

# Fig S4. Continuación...

| 87  | 27_tje-TJEJU_2162   | ААААННИНИНИННН           | ССССССССССССННННННННН    |
|-----|---------------------|--------------------------|--------------------------|
| 88  | 28 prn-BW723 13825  | ААААННИНИНИНИНН          | ССССССССССССННННННННН    |
| 89  | 30 aqb-D1818 09550  | ААААННИНИНИНИНИНИН       | ССССССССССССННННННННН    |
| 90  | 31 laci-CW733 06300 | ААААНННННННННН           | ССССССССССССННННННННН    |
| 91  | 36 cep-Cri9333 2611 | ААААННИНИНИНИНИНИН       | ССССССССССССННННННННН    |
| 92  | 37 ava-Ava 0677     | ААААННИНИНИНИНИНИН       | ССССССССССССННННННННН    |
| 93  | 40 cthe-Chro 1359   | ААААННИНИНИНИНИНИН       | ССССССССССССННННННННН    |
| 94  | 41 ptn-PTRA a1372   | ААААННИНИНИНИНИНИН       | ССССССССССССННННННННН    |
| 95  | 45 rhh-E0Z06 01765  | ААААННИНИНИНИНИНИН       | ССССССССССССННННННННН    |
| 96  | 49 nii-Nit79A3 3401 | ААААННИНИНИНИНИНИН       | ССССССССССССННННННННН    |
| 97  | 50 ifl-C1H71 04530  | ААААННИНИНИНИНИНИН       | ССССССССССССННННННННН    |
| 98  | 53 mpsy-CEK71 12595 | ААААННИНИНИНИНИНИН       | ССССССССССССННННННННН    |
| 99  | 57 dal-Dalk 5292    | ААААННИНИНИНИНИНИН       | ССССССССССССННННННННН    |
| 100 | 62 pol-Bpro 2870    | ААААННИНИНИНИНИНИНИНИС   | ССССССССССССННННННННН    |
| 101 | 63 eba-ebA6530      | ААААННИНИНИНИНИНИН       | ССССССССССССННННННННН    |
| 102 | 64 adi-B5T 02407    | ААААННИНИНИНИНИНИН       | СССССССССССННННННННН     |
| 103 | 65 haz-A9404 06910  | ААААННИНИНИНИНИНИН       | ССССССССССССННННННННН    |
| 104 | 66 bfz-BAU07 18345  | ААААННИНИНИНИНИНИНИНИНИН | ІННССССССССССССННННННННН |
| 105 | 69 csa-Csal 2711    | ААААННИНИНИНИНИНИНН      | ССССССССССССННННННННН    |
| 106 | 71 pmex-H4W19 15985 | ААААННИНИНИНИНИННИНАААА  | ССССССССССССННННННННН    |
|     |                     |                          |                          |

## Continuación...

| 108 | 27 tje-TJEJU 2162   | ААССИНИНИНИСИНИНИНИНИНИ               | -CCC   |         |
|-----|---------------------|---------------------------------------|--------|---------|
|     | 28 prn-BW723 13825  | АААСНИНИНИНИНИНИНИНИН                 | -CC    |         |
| 110 | 30 agb-D1818 09550  | ААССИНИНИНИСИНИНИНИНИНИН              |        |         |
| 111 | 31 laci-CW733 06300 | АААСИНИНИНИСИНИНИНИНИНИ               | -CCC   | -CCCC   |
| 112 | 36 cep-Cri9333 2611 | АААСИНИНИНИСИНИНИНИНИНИН              | -CCC   | -CCCCC  |
| 113 | 37 ava-Ava 0677     | АААСИНИНИНИСИНИНИНИНИНИ               | -CCC   | -CCC    |
| 114 | 40 cthe-Chro 1359   | АААСНИНИНИНИНИНИНИНИН                 | -CCC   | -CCCCC  |
| 115 | 41 ptn-PTRA a1372   | АААСИНИНИНИСИНИНИНИНИНИ               | -CCC   | -CCCCC  |
| 116 | 45_rhh-E0Z06_01765  | ААССИНИНИНИСИНИНИНИНИНИН              | -CCC   | -CCCCC  |
| 117 | 49_nii-Nit79A3_3401 | АААСНИНИНИНИНИНИНИНИН                 | -СССНН | HHHC    |
| 118 | 50_ifl-C1H71_04530  | АААСНИНИННИСИНИННИННИНСССИННИННИНСССС | CCCC   | -CCCCC  |
| 119 | 53 mpsy-CEK71 12595 | ААССИНИНИНИСИНИНИНИНИНИН              | -СССНН | ННННСС  |
| 120 | 57_dal-Dalk_5292    | АААСНИНИНИНИНИНИНИНИНИНИН             | -CCC   |         |
| 121 | 62_pol-Bpro_2870    | АААСНИНИНИНИНИНИНИНИН                 | -CCC   | -CCCCC  |
| 122 | 63_eba-ebA6530      | АААСИНИНИНИНИНИНИНИНИНСССИНИНИНИНИНСС | CCCCC  | CCCCCCC |
| 123 | 64_adi-B5T_02407    | АААСНИНИНИНИНИНИНИНИН                 | -CCC   | -CCCCC  |
| 124 | 65_haz-A9404_06910  | АААСНИНИНИНИНИНИНИНИН                 |        |         |
| 125 | 66_bfz-BAU07_18345  | АААСНИНИНИНИНИНИНИНИН                 | -СССНН | HHHC    |
| 126 | 69_csa-Csal_2711    | АААСНИНИНИНИНИНИНИНИН                 |        |         |
| 127 | 71_pmex-H4W19_15985 | ААССИНИНИНИНИНИНИНИНИН                | -CCC   | -CCCC   |
|     |                     |                                       |        |         |

## Fig S4. Continuación...

| 129 | 27 tje-TJEJU 2162   |  |
|-----|---------------------|--|
| 130 | 28 prn-BW723 13825  |  |
| 131 | 30 aqb-D1818 09550  |  |
| 132 | 31 laci-CW733 06300 |  |
| 133 | 36_cep-Cri9333_2611 |  |
| 134 | 37_ava-Ava_0677     |  |
| 135 | 40_cthe-Chro_1359   |  |
| 136 | 41_ptn-PTRA_a1372   |  |
| 137 | 45_rhh-E0Z06_01765  |  |
| 138 | 49_nii-Nit79A3_3401 |  |
| 139 | 50_ifl-C1H71_04530  |  |
| 140 | 53_mpsy-CEK71_12595 |  |
| 141 | 57_dal-Dalk_5292    |  |
| 142 | 62_pol-Bpro_2870    |  |
| 143 | 63_eba-ebA6530      |  |
| 144 | 64_adi-B5T_02407    |  |
| 145 | 65_haz-A9404_06910  |  |
| 146 | 66_bfz-BAU07_18345  |  |
| 147 | 69_csa-Csal_2711    |  |
| 148 | 71_pmex-H4W19_15985 |  |

## C-terminal

Fig S4. Alineamiento múltiple de los elementos de estructura secundaria de las proteínas del COG3228 con respecto al contenido de GC de sus genes. El formato de alineamiento se divide en dos partes: la primera parte de lado izquierdo refleja el valor (orden ascendente) del contenido de GC de los genes que codifican a las proteínas del COG, seguido del nombre del gen; la segunda parte muestra el alineamiento de las secuencias de estructuras secundarias: H para hélice alfa, E para hoja beta, y C para lazo.

## Anexo

Anexo 1. Selección de especies no redundantes. Las cepas de *Candidatus Sulcia muelleri* existentes en la base de datos KEGG. El ID de KEGG (columna uno), las cepas (columna 2), el tamaño del genoma (bp) (columna 3), el número de proteínas (columna 4) y el contenido de GC genómico (columna 5).

| ID_KEGG | cepas                                 | Tamaño del genoma | # proteinas | %GC genómico |
|---------|---------------------------------------|-------------------|-------------|--------------|
| sum     | Candidatus Sulcia muelleri CARI       | 276511            | 246         | 20.95        |
| smup    | Candidatus Sulcia muelleri PSPU       | 285352            | 251         | 20.83        |
| smum    | Candidatus Sulcia muelleri ML         | 190405            | 187         | 23.51        |
| smv     | Candidatus Sulcia muelleri Sulcia-ALF | 190733            | 188         | 23.39        |
| smue    | Candidatus Sulcia muelleri TETUND     | 270029            | 247         | 22.79        |
| sms     | Candidatus Sulcia muelleri SMDSEM     | 276984            | 242         | 22.49        |
| smub    | Candidatus Sulcia muelleri BGSS       | 244618            | 227         | 22.24        |
| smg     | Candidatus Sulcia muelleri GWSS       | 245530            | 227         | 22.17        |
| smh     | Candidatus Sulcia muelleri DMIN       | 243933            | 226         | 22.11        |

Dos cepas de Candidatus *Sulcia muelleri* fueron elegidas (sum y smup) por tener tamaños de genomas grandes (respectivamente), mayor número de proteínas y porque contienen el mismo contenido de GC genómico (de 20%).

## Reconocimiento especial al apoyo brindado para la realización de esta tesis:

A la M.B. María Luisa Tabche Barrera, por su apoyo en el buen funcionamiento del laboratorio y su organización para contar de manera adecuada todos los reactivos utilizados durante una primera parte experimental de mis estudios doctorales. Por cuestiones de las restricciones de seguridad sanitaria impuestas para contender con la pandemia causada por el virus SARS-CoV-2, se decidió realizar un proyecto teórico que es el que constituye la tesis que aquí se presenta.

Al M. en C. Walter Josué Hernández Santos por su apoyo en la realización de la página web Gcto2D (https://biocomputo.ibt.unam.mx/gcto2d/).

Al M. en C. Fernando Fontove Herrera por su asesoría en el desarrollo de algoritmos computacionales y análisis estadísticos.

# 12. BIBLIOGRAFÍA

- Sueoka N. Correlation between Base Composition of Deoxyribonucleic Acid and Amino Acid Composition of Protein. PROC N A S. 1961;47:1141-1129.
- Chou PY, Fasman GD. Conformational parameters for amino acids in helical, Beta-sheet, and random coil region calculated from proteins. *Biochemetry*. 1974;13(2):211-222.
- 3. Chou PY, Fasman GD. Prediction of Protein Conformation. *Biochemistry*. 1974;13(2):222-245. doi:10.1021/bi00699a002
- 4. Wu H, Zhang Z, Hu S, Yu J. On the molecular mechanism of GC content variation among eubacterial genomes. *Biol Direct*. 2012;7(2):1-16. doi:10.1186/1745-6150-7-2
- McCutcheon JP, Moran NA. Functional convergence in reduced genomes of bacterial symbionts spanning 200 my of evolution. *Genome Biol Evol*. 2010;2(1):708-718. doi:10.1093/gbe/evq055
- 6. Thomas SH, Wagner RD, Arakaki AK, et al. The Mosaic genome Anaeromyxobacter dehalogenans 2CP-C suggest an aerobic common ancestor to the Delta-Proteobacteria. *PLoS One*. 2008;3(5):e2103.
- 7. Musto H, Naya H, Zavala A, Romero H, Alvarez-Valín F, Bernardi G. Genomic GC level, optimal growth temperature, and genome size in prokaryotes. *Biochem Biophys Res Commun.* 2006;347(1):1-3. doi:10.1016/j.bbrc.2006.06.054
- 8. Almpanis A, Swain M, Gatherer D, McEwan N. Correlation between bacterial G+C content, genome size and the G+C content of associated plasmids and bacteriophages. *Microb genomics*. 2018;4(4):e000168. doi:10.1099/mgen.0.000168
- 9. McCutcheon JP, McDonald BR, Moran NA. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. *PLoS Genet*. 2009;5(7). doi:10.1371/journal.pgen.1000565
- 10. Mann S, Chen YPP. Bacterial genomic G + C composition-eliciting environmental adaptation. *Genomics*. 2010;95:7-15. doi:10.1371/journal.pone.0107319
- 11. Foerstner KU, von Mering C, Hooper SD, Bork P. Environments shape the

- nucleotide composition of genomes. *EMBO Rep.* 2005;6(12):1208-1213. doi:10.1038/sj.embor.7400538
- 12. Chen W, Shao Y, Chen F. Evolution of complete proteomes: Guanine-cytosine pressure, phylogeny and environmental influences blend the proteomic architecture. *BMC Evol Biol.* 2013;13(1):1. doi:10.1186/1471-2148-13-219
- 13. Zhou HQ, Ning LW, Zhang HX, Guo FB. Analysis of the relationship between genomic GC content and patterns of base usage, codon usage and amino acid usage in prokaryotes: Similar GC content adopts similar compositional frequencies regardless of the phylogenetic lineages. *PLoS One*. 2014;9(9). doi:10.1371/journal.pone.0107319
- Galtier N, Lobry JR. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. *J Mol Evol*. 1997;44(6):632-636. doi:10.1007/PL00006186
- 15. Kagawa Y, Nojima H, Nukiwa N, et al. High guanine plus cytosine content in the third letter of codons of an extreme thermophile. DNA sequence of the isopropylmalate dehydrogenase of Thermus thermophilus. *J Biol Chem*. 1984;259(5):2956-2960. doi:10.1016/s0021-9258(17)43242-x
- Lightfield J, Fram NR, Ely B. Across bacterial phyla, distantly-related genomes with similar genomic GC content have similar patterns of amino acid usage. *PLoS One*. 2011;6(3). doi:10.1371/journal.pone.0017677
- 17. Muto A, Osawa S. The guanine and cytosine content of genomic DNA and bacterial evolution. *Proc Natl Acad Sci U S A*. 1987;84(1):166-169. doi:10.1073/pnas.84.1.166
- 18. Sueoka N. Directional mutation pressure and neutral molecular evolution. *Proc Natl Acad Sci U S A*. 1988;85(8):2653-2657. doi:10.1073/pnas.85.8.2653
- Gu X, Hewett-emmett D, Li W. Directional mutational pressure affects the amino acid composition and hydrophobicity of proteins in bacteria. *Genetica*. 1998;102/103:383-391.
- Singer GAC, Hickey DA. Nucleotide Bias Causes a Genomewide Bias in the Amino Acid Composition of Proteins. *Mol Biol Evol.* 2000;17(11):1581-1588.
- 21. Andersson SGE, Sharp PM. Codon usage and base composition in Rickettsia

- prowazekii. *J Mol Evol.* 1996;42(5):525-536. doi:10.1007/BF02352282
- Lobry JR. Influence of genomic G + C content on average amino-acid composition of proteins from 59 bacterial species. *Gene.* 1997;205(1-2):309-316.
   doi:10.1016/S0378-1119(97)00403-4
- 23. Bernardi G, Bernardi G. Compositional Constraints and Genome Evolution \*. *J Mol Evol.* 1986;24:1-11.
- Chou PY, Fasman GD. Prediction of the Secondary Structure of Proteins From Their Amino Acid Sequence. *Adv Enzymol Relat Areas Mol Biol.* 1978;47(1195):45-148. doi:10.1002/9780470122921.ch2
- 25. Pirovano W, Heringa J. *Protein Secondary Structure Prediction*. Vol 609.; 2010. doi:10.2307/j.ctvfxvccj.23
- 26. Argos P, Palau J. Amino acid distribution in protein secondary structures. *Int J Pept Protein Res.* 1982;19(4):380-393. doi:10.1111/j.1399-3011.1982.tb02619.x
- 27. Lagerkvist U. "Two out of three": An alternative method for codon reading. *Proc Natl Acad Sci U S A*. 1978;75(4):1759-1762. doi:10.1073/pnas.75.4.1759
- 28. Lehmann J, Libchaber A. Degeneracy of the genetic code and stability of the base pair at the second position of the anticodon. *Rna*. 2008;14(7):1264-1269. doi:10.1261/rna.1029808
- 29. Bernardi G, Bernardi G. Codon Usage and Genome Composition. *J Mol Evol.* 1985;22:363-365.
- 30. Codon Usage Database. https://www.kazusa.or.jp/codon/. Accessed February 9, 2023.
- 31. Knight RD, Freeland SJ, Landweber LF. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. *Genome Biol.* 2001;2(4):1-13. doi:10.1186/gb-2001-2-4-research0010
- 32. McCutcheon JP. The bacterial essence of tiny symbiont genomes. *Curr Opin Microbiol.* 2010;13(1):73-78. doi:10.1016/j.mib.2009.12.002
- 33. Bennett GM, Moran NA. Small, smaller, smallest: The origins and evolution of ancient dual symbioses in a phloem-feeding insect. *Genome Biol Evol.* 2013;5(9):1675-1688.

- 34. Garcia Costas AM, Liu Z, Tomsho LP, Schuster SC, Ward DM, Bryant DA. Complete genome of Candidatus Chloracidobacterium thermophilum, a chlorophyll-based photoheterotroph belonging to the phylum Acidobacteria. *Environ Microbiol.* 2012;14(1):177-190. doi:10.1111/j.1462-2920.2011.02592.x
- 35. Zhao X, Zhang Z, Yan J, Yu J. GC content variability of eubacteria is governed by the pol III α subunit. *Biochem Biophys Res Commun*. 2007;356(1):20-25. doi:10.1016/j.bbrc.2007.02.109
- 36. Oliver JL, Marín A. A relationship between GC content and coding-sequence length. *J Mol Evol.* 1996;43(3):216-223. doi:10.1007/BF02338829
- 37. Naya H, Romero H, Zavala A, Alvarez B, Musto H. Aerobiosis increases the genomic guanine plus cytosine content (GC%) in prokaryotes. *J Mol Evol*. 2002;55(3):260-264. doi:10.1007/s00239-002-2323-3
- 38. Sueoka N. On the Genetic basis of Variation and heterogeneity of DNA bases of Composition. *PROC N A S.* 1962;48:582-592.
- 39. Raghavan R, Kelkar YD, Ochman H. A selective force favoring increased G+C content in bacterial genes. *Proc Natl Acad Sci U S A*. 2012;109(36):14504-14507. doi:10.1073/pnas.1205683109
- 40. Freese E. On the evolution of the base composition of DNA. *J Theor Biol.* 1962;3(1):82-101. doi:10.1016/S0022-5193(62)80005-8
- 41. Singer CE, Ames BN. Sunlight Ultraviolet and Bacterial DNA Base Ratios We have found a strong correlation. *Science* (80-). 1970;170(3960):822-826.
- 42. McEwan CEA, Gatherer D, McEwan NR. Nitrogen-fixing aerobic bacteria have higher genomic GC content than non-fixing species within the same genus. Hereditas. 1998;128(2):173-178. doi:10.1111/j.1601-5223.1998.00173.x
- 43. Madigan MT, Martinko JM, Dumlap P V., Clark DP. *Brock: Biología de Los Microorganismos*. 12th ed. Pearson; 2009.
- 44. Alberts B, Johnson A, Lewis J, et al. *Molecular Biology of the Cell.* 6th ed. Garlan Science; 2014.
- 45. Lewis PN, Go N, Go M, Kotelchuck D, Scheraga HA. Helix probability profiles of denatured proteins and their correlation with native structures. *Proc Natl Acad Sci U S A*. 1970;65(4):810-815. doi:10.1073/pnas.65.4.810

- 46. ACS publications Most trusted, Most Cited and Most Read. https://pubs.acs.org/doi/10.1021/bi00699a001#. Accessed January 21, 2023.
- 47. KEGG: Kyoto Encyclopedia of Genes and Genomes. https://www.genome.jp/kegg/. Accessed June 6, 2022.
- 48. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/.
  Accessed June 10, 2022.
- 49. UniProt. https://www.uniprot.org/. Accessed October 5, 2021.
- 50. Yan R, Xu D, Walker S, Zhang Y. PSSpred · bio.tools. https://bio.tools/psspred. Accessed October 5, 2021.
- 51. PSIPRED Workbench. http://bioinf.cs.ucl.ac.uk/psipred/. Accessed June 10, 2022.
- JPred: A Protein Secondary Structure Prediction Server.
   https://www.compbio.dundee.ac.uk/jpred/. Accessed June 10, 2022.
- 53. SWISS-MODEL Interactive Workspace. https://swissmodel.expasy.org/interactive. Accessed June 10, 2022.
- 54. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Res.* 2000;28(1):27-30. https://www.genome.jp/kegg/. Accessed June 10, 2022.
- 55. Yan R, Xu D, Yang J, Walker S, Zhang Y. A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. *Sci Rep.* 2013;3:2619. doi:10.1038/srep02619
- 56. Tatusov RL, Fedorova ND, Jackson JD, et al. The COG database: an updated version includes eukaryotes. *BMC Bioinformatics*. 2003;4(4):1-14.
- 57. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* 2004;32(5):1792-1797. doi:10.1093/nar/gkh340
- 58. Eddy SR. Profile hidden Markov models. *Bioinformatics*. 1998;14(9):755-763. doi:10.1093/bioinformatics/14.9.755
- 59. McKinney W. Data Structures for Statistical Computing in Python. *Proc 9th Python Sci Conf.* 2010;1(Scipy):56-61. doi:10.25080/majora-92bf1922-00a
- 60. Harris CR, Millman KJ, van der Walt SJ, et al. Array programming with NumPy. *Nature*. 2020;585(7825):357-362. doi:10.1038/s41586-020-2649-2
- 61. Levitt M. Conformational Preferences of Amino Acids in Globular Proteins.

- Biochemistry. 1978;17(20):4277-4285. doi:10.1021/bi00613a026
- 62. Mira A, Martín-Cuadrado AB, D'Auria G, Rodríguez-Valera F. The bacterial pangenome: A new paradigm in microbiology. *Int Microbiol.* 2010;13(2):45-57. doi:10.2436/20.1501.01.110
- 63. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. *Nature*. 2021;596(7873):583-589. doi:10.1038/s41586-021-03819-2





Coordinación de Programas educativos









Posgrado en Ciencias

## DRA. LINA ANDREA RIVILLAS ACEVEDO COORDINADORA DEL POSGRADO EN CIENCIAS PRESENTE

Atendiendo a la solicitud para emitir DICTAMEN sobre la revisión de la tesis titulada: Efecto del sesgo del contenido de GC genómico de organismos procariotas en las estructuras secundarias de sus proteínas, que presenta la alumna Diana Barceló Antemate (10010088) para obtener el título de **Doctor en Ciencias.** 

Director de tesis: Dr. Enrique Merino Pérez

Nos permitimos informarle que nuestro voto es:

| NOMBRE                                                 | DICTAMEN | FIRMA         |
|--------------------------------------------------------|----------|---------------|
| Dra. Carmen Nina Pastor Colón<br>CIDC – UAEM           | APROBADO | 13/abril/2023 |
| Dra. María del Rayo Sánchez Carbente<br>CEIB – UAEM    | APROBADO | 27/marzo/2023 |
| Dr. Ramón Antonio Gonzalez García Conde<br>CIDC – UAEM | APROBADO | 23/marzo/2023 |
| Dra. Cinthia Ernestina Nuñez López<br>IBT – UNAM       | APROBADO | 24/marzo/2023 |
| Dra. Verónica Mercedes Narváez Padilla<br>CIDC – UAEM  | APROBADO | 17/abril/2023 |
| Dra. Rosa María Gutiérrez Ríos<br>IBT – UNAM           | APROBADO | 10/abril/2023 |
| Dr. Armando Hernández Mendoza<br>CIDC – UAEM           | APROBADO | 24/marzo/2023 |







Se expide el presente documento firmado electrónicamente de conformidad con el ACUERDO GENERAL PARA LA CONTINUIDAD DEL FUNCIONAMIENTO DE LA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS DURANTE LA EMERGENCIA SANITARIA PROVOCADA POR EL VIRUS SARS-COV2 (COVID-19) emitido el 27 de abril del 2020.

El presente documento cuenta con la firma electrónica UAEM del funcionario universitario competente, amparada por un certificado vigente a la fecha de su elaboración y es válido de conformidad con los LINEAMIENTOS EN MATERIA DE FIRMA ELECTRÓNICA PARA LA UNIVERSIDAD AUTÓNOMA DE ESTADO DE MORELOS emitidos el 13 de noviembre del 2019 mediante circular No. 32.

### Sello electrónico

### RAMON ANTONIO GONZALEZ GARCIA CONDE | Fecha: 2023-03-23 18:40:39 | Firmante

LtrHL576vB82eiNwHxNELH7InfxLp90odeuLJYpdQ2C2Le7YSTTI6baZinzn0eUUE+zcrcuKWnJB9K8DUaSgRpU/or1qqkxHdgklBltxjn5aQHA7q4IsVmvrkUIZMcu1/57kvVlu5K2aA 0GQlcaXMkN55+NIBCnrZkPoh1/TThTqFYuK3TIUNI6ComDcyMNK3OE7arDYjnvA0QeDtvcqf6u+BtznYSpra98uaf3w/mLp9TeRopcLC2WzlNyLlQR/LkBuyUpEGpW5ulRusxdR7f 1wFgaQWrkeJA7Q344fJZOLfPOOc+9wGle9d3rEZBYX+xQ9Svw4VKWty7//GHtHug==

### ARMANDO HERNANDEZ MENDOZA | Fecha: 2023-03-24 08:27:59 | Firmante

guUKznBaec2GGKw8XjMCdDzxZuRM6mJgJfz3DfINooeV/c6C184KVnenc194XoutkW86y8ffwYmDENB+Mt26+n14ygpzW0RdKXYk2gC26l/4gDvj6fVjAHvkximz6ss3BLwpCwq8dHE10ZlkZJN9mF1Ldpe2qrkR1seDJ54Hok2HnwGKhs8uM7UhfotoOI70myDDZNue70/oGGJntxblNj4dJJa1UOMVY1a0abEU9Ehnr8qRUFUpJz20SlpkWtiR9S/bzxabglUcMuplb+VHclGVbD2DAZ4aGo/zDVXv83cxzYCGD9fNr95kIJ2sjsr0579AxMDIYGgGAMrbPuUURw==

#### CINTHIA ERNESTINA NUÑEZ LOPEZ | Fecha: 2023-03-24 08:55:51 | Firmante

kHHTBaEsANISKoASbRFoKdnkztj4heNNOnRb7lz6l7Nzm6Elvsu80F6WkdeA6//SyYx5iN4d9hnXCmvdkJh1visa9859HS9MMEcy/qc46oTM5tNibUnhc8dlRHZP8eluO9wvZrCWG 3LliR52kDG8sCZ5vYl9s7lNFO+iCca9Lu9qVWw9fDxdBZDvVPddKnbTSOqqyn/nFGqV7ZdGErPvaqEXOfUzP+cJno30s0E40sZtS3ElTJZgZkFTl/c7FlFsbMBODDlJjEJsqgLWgtN CQd/+k332uLXB6qugRsIQEDwyj45vaOvPTjgWSCRH0s9yMNLyfg6wit2y+04UWyNtlg==

### MARIA DEL RAYO SANCHEZ CARBENTE | Fecha: 2023-03-27 16:26:23 | Firmante

Dpn/w3Dv1be/0aFby3PAToHqOJWpU4/NuvABABzC3JjECMnQHxiC9uT5QDUlxKPKrWuatviMay4quQmCsAS5ReFbWCkDEwU50SCJlaQUR2ta3dyal9v5iQrFPNJ2d4TGlx99NIBUT1xcDOh57mpcoteM2+j0yLM+MRS4qHSJG0LWSral/saXUG9RJsXPhW7J5oNXgJQAMtbm517/tH6BwOpBzGxKFSzVB+2zwrLMz3Mh/pggjDve61+XwBfOSYaUFHmo+nnjQI7pQhpzL8XzNCEtECF9U33nnMVsyID2EeXkpY0BnH9cl/GQzQnEly4Btg+JDXAECCB/baWV7HBy5w==

### ROSA MARÍA GUTIÉRREZ RÍOS | Fecha: 2023-04-10 19:12:44 | Firmante

ZwaMzsO/WR1XJVUHf/l8FvEZsGZ34FgFoWXxXnlHjdFCPoQqL58blyz8XY+OhLKvUamGi6e30+8GB/kZqEBAEYYdbobuku2Asw80H9btf3bvDSRUhxeLTsE6tkOZsBACpAUjtcG 94eO/s/E4pZaYtGmvTDRs4BCP8ZfadrqyWR0ammEBjuBYyvSX5k4WGBPCQm+8opQ7Afd8hWmgNl558jzS77G5ofBuWhlVLHuUnzXXYN9E39+wCjfazZ3ABv82pKarv9d3MTv8 lygle15ErJjiTuOsSgZeyh9S61JCMlY1PpIAYTMm0D6Rfi3PphKHtWaKOz9Azb7MVM9lLlkXUg==

### CARMEN NINA PASTOR COLON | Fecha: 2023-04-13 17:46:44 | Firmante

SIx8P62o+LvkN7IZ6W+oH4B9KLXaGQ1s6WpR0wQBrDfaf5C2LGPopZvL60ztvVXP6S5UyflfooMRL5uk6584+GqJYahJxMPYhh2SmakhZFE1n6ZyyXNqqd4w/jR0fZbVYZJSSjhCrR8aR1buitVLDoPLO+qEwt7hyKkWys+mbLbEKILKgAEWTypXMd7rjw22Alzn0jwGlWmeqxLQmAZtHheYtdO/TSiYMYjUypj/9aElUu3z8m2VigpUE04+sUo4ytY6eqpajoHX0MWTI3xf0Krhfxkz0tZxsKSilqlCtDx8CqQmObt2oM73T9MsWsCa+NYwHabnJ2buzSpnEY/Nrw==

### VERONICA MERCEDES NARVAEZ PADILLA | Fecha: 2023-04-17 12:01:16 | Firmante

qXzgSQ9dj71e8TEPCapIFyxXhiBnnvAAUFC+MhiTSj7HcO5yHaC0G3HhFiUn3vs7x+34+zgpLe46TU8drpGKdUaCqeVgvwNY1sWsWmVPvwoqE6mDpenBb6vrM40VQRRJfYbz URMIXtPWqEjU6XUXKPhzMR/diCnPVg1kqD+NVtyIDGLsJp+OwO5fhjUq8CsE+/PWQCqM671kek54sJBz0JSHWI8mO2l1yVarO8dlTJbA8lzqaJU1MtpgtRMtHAw5N6biFfNAuNd 7gYcepKZAgxs6xiEqCdCRmYgGgkyl1g9vAGVvG0DcKvV947wW10eNQkCdqbbqcLfe6Ypl0AS3TA==



Puede verificar la autenticidad del documento en la siguiente dirección electrónica o escaneando el código QR ingresando la siguiente clave:

TJ8wk9Mgv

https://efirma.uaem.mx/noRepudio/3ATzRdyCnkrwlBmWQAv94HbHFqg6Rlg3

