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In this article, a proposal to solve two control problems from multiple point iden-
tification process frequency response of linear models, using a relay closed loop is 
presented. The identified points are used, in one case a PID controller tuning, and 
the other application deals with transfer function modeling problem. Both problems 
are stated as a nonlinear least squares unconstrained minimization problem. The 
optimization problem is solved with a simple genetic algorithm.

En este trabajo se presentan dos problemas de control a partir de la identificación 
de múltiples puntos de la respuesta en frecuencia de sistemas lineales, mediante la 
técnica de relevador en lazo cerrado. En un caso, los puntos identificados son usados 
para la sintonización de controladores PID. La otra aplicación es hacia la obtención 
del modelo matemático mediante función de transferencia. Ambas dificultades son 
planteadas como un problema de minimización no lineal de mínimos cuadrados sin 
restricciones. El problema de optimización es resuelto con un algoritmo genético 
simple.
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1 Introduction

Proportional-Integral-Derivative (PID) controllers are 
widely used in many control systems. In process 
control, more than ninety-five percent of the control 
loops are of PI or PID type [1, 2]. Since Ziegler and 
Nichols [3] proposed their empirical method to tune 
PID controllers, to date, many relevant methods to 
improve the tuning of PID controllers has been reported 
at the control literature, one of them is a tutorial given 
by Hang et al. [4].

The relay feedback auto-tuning method was 
proposed by Astrom and Hugglund [5], and was one 
of the first to be commercialized and has remained 
attractive owing to its simplicity. In this method, the 
estimation of critical point over nyquist curve is 
enough to tune a PID controller. In recently studies, 
it has been shown that the multiple identified points 
allow better PID tuning controller [6, 7]. This work 
presents two applications of the multiple-point iden-
tification method, reported by Wang et al. [6, 8], in 
order to tune PID controllers and, on the other hand, 
to obtain transfer function coefficients. The control 
problem is posed as a nonlinear least squares un-
constrained problem. 

A genetic algorithm is proposed to solve the op-
timization problem. The same methodology can be 
used for both cases: PID tuning and transfer function 
modeling. Nonlinear least squares methods involve an 
iterative improvement of parameter values in order to 
reduce the sum of the squares of the errors between 
the function and the measured data points. Problems 
of this type occur when fitting model functions to ex-
perimental data. The Levenberg-Marquardt algorithm 
[9-11], is the most common method for nonlinear 
least-squares minimization, nevertheless it can suffer 
from a slow convergence, and it is possible to find only 
a local minimum [10].

The PID’s designed with this method takes into 
account the effect of the sensitivity function values 
of the closed-loop system as a measure of robustness 
against possible variations in the parameters of the 
plant [1]. The proposed plants in this article cover a 
wide range of cases: stable, with short and long dead 
times, whit real and complex poles, and with positive 
and negative zeros, which are representative of the 
automatic control literature [4, 5].

The contents of the paper are described as follows: 
In section 2 the basic definitions of a nonlinear least 

squares unconstrained minimization problem, use of 
relay transient as well as a simple genetic algorithm 
procedure are shown. Section 3 presents applications 
of the multiple point identification method to a PID 
controller tuning and to transfer function modeling. 
Conclusions are contained in section 4.

2 BASIC CONCEPTS

2.1 Unconstrained minimization problem

In a large number of practical problems, the objective 
function f (x) is a sum of squares of nonlinear functions

     (1)

that needs to be minimized. We consider the 
following problem

     (2)

This is an unconstrained nonlinear least squares mi-
nimization problem. It is called least squares because 
the sum of squares of these functions is the quantity to 
be minimized. Problems of this type occur when fitting 
model functions to data: if φ(x; t) represents the model 
function with t as an independent variable, then each  
rj (x) = φ(x; tj) − yj, where φ (tj, yj) is the given set of data 
points [10, 11]. 

2.2 Use of relay transient

It was shown by Wang et al. [6] who propose a method 
that can identify multiple points simultaneously under 
one relay test. Other important researches on the topic 
can be found at [12-15]. For a standard relay feedback 
system in figure 3, the process input u(t) and output 
y(t) are recorded from the initial time until the system 
reaches a stationery oscillation. U(t) and y(t) are not 
integrable since they do not die down in finite time. 
They cannot be directly transformed to frequency 
response meaningfully using FFT. A decay exponential 
e-αt is then introduced to form
			   				  

     (3)

and
			 

     (4)
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such that u(t) and y(t) will decay to zero ex-
ponentially as t approaches infinity. Applying the 
Fourier transform to (3) and (4) yields

and

For a process G(s)=Y(s)/U(s), at s=jw+α, one has
	

     (5)

Ỹ(jw) and U  ̃ (jw) can be computed at discrete 
frequencies with the standard FFT technique [6, 8]. 
Therefore, the shifted process frequency response 
G(jw+α) can be obtained from (5). To find G(jw) from 
G(jw+α), we first take the inverse FFT of G(jw+α) as
ɡ̃   (kT)=FFT-1 (G(jw+α)) = ɡ  (kt)e-αkt

It then follows that the process impulse response
g(kT) is

ɡ  (kt) = ɡ  (kt)e-αkt

Applying the FFT again to g(kT) leads to the process 
frequency response:

G (jw) = FFT (ɡ   (kt))				    (6)

The method can accurately identify as many as 
desired frequency response points with one relay 
experiment. They may be very useful for improving the 
performance of PID and other model-based controllers. 
The required computations are more involved than 
the standard relay technique, especially if a large 
number of frequency response points are needed. In 
both applications: PID tuning and transfer function 
modeling, the shifted frequency response may be used 
without the needing to computer G(jw). To illustrate 
the method, a model with oscillatory dynamics is 
considered in simulation. 

   (7)

Figure 1 shows the identified frequency responses 
for these processes using this method, for G(jw). 

And G(jw+α) plot is given by figure 2.

2.3 Simple Genetic Algorithms

The genetic algorithm is a useful tool to solve both 
constrained and unconstrained optimization problems 
that takes principles of biological evolution [16-19]. 
The following procedure summarizes the main steps 
that the genetic algorithm executes:

Figura 1. Nyquist plot for G(jw)

Figura 2. Nyquist plot for G(jw+α)

Figura 3. Relay feedback system
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and

where p is the positive root of equation

(Am-1)2 = 4ζ2 p2 + (1-p2)2

The default settings for ζ and wnL values are =707 
and wnL=2, which imply that the overshoot of the 
objective set-point step response is about 5%, the 
phase margin is 60° and the gain margin is 2.2 [20]. 
The open-loop transfer function corresponding to Gd is

     (9)

The controller C(jw) is designed such that the actual 
GC(jw) is fitted to the desired transfer function Gd(jw), 
as well as possible. Thus the resultant system will have 
the desired performance. The PID controller desired 
can be obtained by minimizing the objective function 
given from the sum of squared differences between 
computed and recorded frequency response points

   (10)

The objective function

         (11) 

If the PID controller is designed from G(jw+α), 
then

C(jwi+α)=					   

   (12)

CG(jwi+α) = C(jwi+α)G(jwi+α)

1.	 The algorithm starts by creating a random initial 
population.

2.	 The algorithm then creates a sequence of new 
populations. At each step, the algorithm uses the 
individuals in the current generation to create the 
next population. To create the new population, 
the algorithm performs the following steps:

a.	 Assign a grade to each member of the current 
population by computing its fitness value.

b.	 Selects members, called parents, based on their 
fitness.

c.	 Some of the individuals in the current population 
that have better grades are chosen as elite. 
These elite individuals are passed on to the next 
population.

d.	 Children from the parents are produced by 
means of crossover and mutation operators.

e.	 The current population is replaced with the 
children to form the next generation.

3.	 The algorithm stops when one of the stopping 
criteria is met.

3 APPLICATIONS

3.1 PID Tuning via frequency response fitting

PID Tuning via frequency response fitting is a simple 
but efficient solution to this kind of processes that was 
developed [4]. It shapes the loop frequency response to 
optimally match the desired dynamics over large range 
of frequencies. Thus the closed-loop performance is 
more firmly guaranteed than in the case of only one or 
two points PID or PI tuning laws. Suppose that multiple 
process frequency response points G(jwi), 1=1,2,…,m, 
are available. The control specifications can be 
formulated as a desirable closed loop transfer function

     (8)

where L is the apparent dead-time of the process, wn 
and ζ dominate the behavior of the desired closed-loop 
response, [4]. If the control specifications are given as 
the phase margin Φm, and gain margin Am, wn and ζ in 
Hd are approximately determined by 
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The objective function

   (13)

The solution of the problem is obtained by minimizing y.

In this work, the identified points were obtained 
from a schematic Simulink® system where relay 
feedback system is simulated. To solve the op-
timization problem, the MATLAB® genetic algorithm 
optimizations using the optimization tool GUI is used.

Example 1. Consider a model with oscillatory dynamics

   (14)

The identified points for this model are showed in 
figures 1 and 2. In this example the apparent dead-time 
L=0.2, is proposed. 

The designed PID is solved by minimizing the 
equation 11 by means of a simple genetic algorithm. 
Multiple points are from G(jw)

   (15)

And from G(jw+α), the tuned PID is

   (16)

Eq, (15)-(16) show that both PID’s controllers have 
very close values as might be expected.

Performance of the PID designed is shown in the 
figure 4.

For this model the value of apparent dead-time of 
the process L=4.5 was proposed.

Estimated model from G(jw) the design PID is

   (18)

Performance of the PID designed is shown in figure 5.

3.2 The sensitivity to modeling errors

Since the controller is tuned for a particular process, 
it is desirable that the closed loop system is not very 
sensitive to variations of the process dynamics [21]. A 
convenient way to express the sensitivity of the closed 
loop system is through the sensitivity function S(s), 
defined as: , where L(s) denotes the loop 
transfer function [2, 3,5,7,22]. L (s) is given by:

L(s) = C(s)G(s)

 

The maximum sensitivity (frequency response) is 
then given by . Therefore Ms is given 
by Ms = ║S (s)║∞ . On the other hand, it is known that 
the quantity Ms, is the inverse of the shortest distance 
from the Nyquist curve of loop transfer function to the 
critical point s=-1 [2]. Typical values of Ms are in the 
range from 1.2 to 2.0. 

Table 1 shows the values of Ms, MA and Φm for both 
presented examples, model with oscillatory dynamics 
and high order model. 

The operation of genetic algorithm was configured 
with the following parameter values:

Figura 4. Control performance for an oscillatory process

Example 2. Considerer a high order model

   (17)

Figura 5. Control performance for high order model process
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•	 	Population size: 100
•	 	Stochastic uniform Selection 
•	 	Crossover function: Scattered
•	 	Mutation function: Gaussian
•	 	Number of generation: 500
•	 	Crossover probability: 0.8
•	 	Mutation probability: 0.09
•	 	Elite count: 2

3.3 Transfer function modeling

A transfer function model is necessary in many 
applications of automatic control. In this work a 
second order plus dead-time model is proposed. The 
identification at models with dead-time is usually 
a non-linear problem [4, 8, 23]. This characteristic 
presents a good opportunity to apply a genetic 
algorithm to solve the problem. 
						    

                           (19)

Which can represent both monotonic and 
oscillatory processes.

3.3.1 Transfer function modeling from G(jw)

Suppose the process frequency response G(jwi), 
i=1,2,…,M is available, because they are required to be 
fitted into G(s) in (19) such that 
		

    (20)

where i=1,2,…,M 

then

And the identified points of G(jw)

The objective function is

                (21) 

The solution of the problem is obtained by
	

                (22)

3.3.2 Transfer function modeling from G(jw+α)

Suppose the shifted frequency response of the process 
G(jwi+α), i=1,2,…,M is available, because they are 
required to be fitted into G(s) in (19) such that 

(23)

where i=1,2,…,M

then

And the identified points of G(jw)

The objective function is

                (24)

The solution of the problem is obtained by

                (25)

Examples

Table 2 shows the results of some examples that were 
proposed to obtain the identified models from multiple 
points from G(jw) and G(jw+α). The estimated models 
were solved by minimizing the equations (22) and (25) 
by means of a simple genetic algorithm.

Tabla 1. Values of Ms, MA and Φm

Model MS Gain margin Phase margin

1.65 2.2 60°

1.90 2.0 56°
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3.4 Transfer function modeling for processes with 
long dead-time

Processes with long dead-time are present in most 
of the industrial processes and can be adequately 
approximated by a model in form of
						    

(26)

Example 3 consider a high vacuum distillation 
column which is a typical long dead-time process [9]

 (27)

The identified model is given in Eq. (28). It was 
obtained by the same method as was presented 
previously. Figure 6 shows the identified points on the 
Nyquist curve from G(jw+α).
						    

(28)

In this example, the number of generations and 
population size used for genetic algorithm are: 1500 
and 100 respectably.

Figura 2. Nyquist plot for G(jw+α)

4 CONCLUSION

The genetic algorithm was an excellent tool to solve 
the optimization problem. It was very important that 
the same methodology can be used for both cases: 
PID tuning and transfer function modeling. In both 
applications, the results obtained were more accurate 
from the identified points of G(jwi+α) to G(jwi). It was 
due to the fact that using G(jwi+α) is more direct than 
G(jwi). Nonlinear least squares method was successfully 
applied in all cases to adjust the parameters values in 
order to reduce the sum of the squares of the errors 
between the function and the measured data points. It 
is remarkable that this method has a good performance 
to obtain a model with very long dead time, proposed 
in example 3, no matter that it used a different structure 
to that of the other cases. 

It is also important to mention that Ms value was 
always a referent in relation to a good performance of 
the designed PID’s, especially at the relative stability; 
on the other hand, when the Ms value is within the 
proposed range, this ensures that the controlled systems 
are insensitive to possible changes in plant models [1]. 
Therefore, the values of gain margin and phase margin 
were very close as expected.

 On the other hand, in regard to the convergence 
of the genetic algorithm, it is known that in practice 
there is no way to know whether it has reached or 
not to the optimal solution (that applies any GA). A 
possible stopping criterion is the consecutive lack of 
new solutions that dominate the ones which are better 
up to the moment. If there is no progress after a certain 
number of iterations, it is reasonable to assume that the 
algorithm converged already, but obviously there is no 
guarantee of that.

Table 2. Proposed model processes

Actual model
Estimated model from 
g(jw)

Estimated model from 

g(jw + α)
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