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El objetivo de esta investigación es mejorar la comprensión del algoritmo de fideli-
dad variable y de diversos métodos de escalamiento a través de tres problemas. Los 
primeros dos problemas son analíticos, y el tercero es un problema de optimización 
structural. Los problemas han sido construidos especificamente para comprender el 
funcionamiento del algoritmo con modelos (alta y baja fidelidad) de diferente grado de 
no-linealidad y diferente número de variables de diseño. El rendimiento del algorimo al 
usar diversos métodos de escalamiento de primero y segundo orden (aditivo y multipli-
cativo), es comparado con el rendimiento de usar programación cuadrática secuencial 
solamente sobre el modelo de alta fidelidad. La principal contribución de esta investi-
gación es la comprensión ganada con los problemas propuestos, lo cual puede extend-
erse a otros problemas, sobre el alcance y limitandes del algoritmo, y la elección del 
método de escalamiento más apropiado dependiendo del caso de studio que se tenga. 
Además, los resultados muestran como una reducción del tiempo de diseño puede ob-
tenerse, mientras se reduce el número de evaluaciones al modelo de alta fidelidad y se 
alcanza convergencia.

The goal of this investigation is to provide a deeper understanding about a variable fidelity 
optimization algorithm and some scaling methods through three test problems. The first 
two problems are analytic, and the third one is a structural optimization problem. The 
test problems have been specifically constructed to look for insights regarding the use 
in the algorithm of models (high fidelity and low fidelity models) with different degree 
of nonlinearity and different number of design variables. Performance of the variable 
fidelity framework for first order and second order scaling methods (multiplicative and 
additive), is compared to a standard sequential quadratic programming optimization 
performed on the high fidelity model. The main contributions of this investigation 
are the insights gained with the specifically constructed test problems, which can be 
extended to other problems, about the use of a trust region variable fidelity framework, 
and the choice of the most suitable scaling methods depending on the case study at 
hand. In addition, results show how a reduction in the design cycle time can be obtained, 
by reducing the number of high fidelity function calls while achieving convergence.
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1 INTRODUCTION

In the design process the low fidelity models are typically 
much cheaper to evaluate, but designs produced using 
these models neglect important physics or details 
included in the more expensive higher fidelity models. 
Variable fidelity model management methods have 
been developed to solve optimization problems that 
involve computationally intensive simulation. Linking 
the optimizer to the low fidelity model makes the design 
process tractable. The high fidelity model is sampled 
after each sequence of low fidelity optimization as 
part of a trust region model management strategy that 
drives convergence of the optimization to the high 
fidelity solution [1-5]. A formal proof of convergence was 
developed in [2,3], that ensures that the optimization 
process converges to a solution of the original problem. 
In the variable fidelity algorithm, scaling methods 
produce a transformation or scaling function that can 
transform the low fidelity model to match the high 
fidelity model.

In the literature one can find methods that work with 
a similar motivation as variable fidelity methods (conduct 
optimization on an inexpensive surrogate model). 
Some of these methods are: successive approximate 
optimization (SAO) algorithms [6], space mapping 
techniques [7], and others that sequentially refine the 
surrogate model through the optimization process 
[8,9]. Variable fidelity methods can further reduce com-
putational cost by using a function similar to a response 
surface, where a low fidelity model provides a global 
approximation which is locally corrected using a scaling 
function to produce a better overall approximation of 
the high fidelity function.

In the literature one can find significant work that 
make use of variable fidelity optimization, and the most 
relevant to our investigation are described next.

A first-order model management optimization 
methodology was presented in [10] for solving hi-
gh-fidelity optimization problems with minimal expense 
in high-fidelity function and derivative evaluation. 
The applicability to general models was demonstrated 
on two computational studies of aerodynamic op-
timization, where the differences between the high 
and low fidelity models was on the mesh size and 
in the equation that is used (Navier-Stokes or Euler 
equations). Variable-complexity optimization was used 
in [11], to aerodynamic shape design problems with 
the objective of reducing the total computational cost 

of the optimization process. The differences between 
the high and low fidelity models considered the use of 
different levels of fidelity in the analysis models, and the 
use of different sets of design variables. Results showed 
that variable-fidelity methods using different physical 
models were not as successful as those which used the 
same model. The authors argued that no correction 
could compensate for the omission of the physical cha-
racteristics of the problem, and that the method was 
only relevant for optimization problems for which all 
the design variables had a similar physical meaning. In 
[12], it was shown that first-order consistency can be 
insufficient to achieve acceptable convergence rates 
in practice, and presented new second-order additive, 
multiplicative, and combined corrections which can sig-
nificantly accelerate convergence of surrogate-based op-
timization (SBO) methods. The authors presented three 
test problems, and the main goal of the investigation 
was to show the superior converge rate of second order 
corrections in all the test problems.

It is important to note that in the aforementioned 
works [10,11], both the high and low fidelity models 
used the same number of variables. On the other 
hand, even though the work in [12] compares different 
scaling models in examples where the high and low 
fidelity models have variable complexity, the studies are 
somehow general. This work goes deeper on the cha-
racteristics and circumstances under which the additive 
scaling method can be preferred over the multiplicative, 
and vice versa, and a first order method can be preferred 
over the second order method.

Therefore, the goal of this investigation is to show 
new insights about a trust region variable fidelity 
algorithm and scaling methods through three specifically 
constructed test problems. Performance of the variable 
fidelity framework for first order and second order scaling 
methods (multiplicative and additive), is compared to 
the standard sequential quadratic programming (SQP) 
optimization performed on the high fidelity model. The 
insights gained can be extended to other problems, 
about the use of the framework with models that differ in 
the degree of non-linearity and in the number of design 
variables, to choose the most suitable scaling methods 
depending on the case study at hand.

2 METHODOLOGY

This section presents the variable fidelity model 
management framework, and a brief description of the 
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and equality constraints ghigh(x0), glow(x0), hhigh(x0) 
and hlow(x0) are also evaluated. In addition the initial 
trust region size is specified.

Step 2 (Gradient evaluation): The gradients of the 
objective for both the high and low-fidelity models are 
evaluated at the current design point xn, as well as the 
Jacobian for the constraints.

Step 3 (Construct scaling model): A scaling model is 
constructed to ensure matching between the different 
fidelity models. This model can be based on many 
different methods; additive and multiplicative are the 
most common, see section 2.3.

Step 4 (Optimize scaled low fidelity model): The op-
timization process is carried out using the SQP optimizer 
from the function fmincon, which is provided in the 
Matlab’s Optimization Toolbox.

Step 5 (Evaluate new design and F penalty function): 
A new candidate point xn* is found as a result of 
solving the optimization problem in step 4. At this new 
candidate point, the high-fidelity objective, fhigh(xn*), 
and constraints ghigh(xn*) and hhigh(xn*) are evaluated. 
The objective and constraint values are used to calculate 
a current value of the penalty function F for the hi-
gh-fidelity and scaled low-fidelity models, which will be 
used in step 6. The penalty function is defined as

F(x)=f(x)+1/μ_n  ∑max(0,gi (x))+ 1/μ_n  ∑|h j (x)|   	
		                                (1)

In Equation (1), μ is the penalty weight that is typically 
decreased by a factor of 10 each time a new point is 
accepted. This penalty weighting drives all the active 
constraints to zero as the algorithm converges.

Step 6 (Trust region management): In order to help 
guarantee convergence of the variable fidelity op-
timization framework, a trust region model management 
strategy is employed. This method provides a means for 
adaptively managing the allowable move limits for the 
approximate design space. A trust region ratio allows the 
trust region model management framework to monitor 
how well the approximation matches the high fidelity 
design space. The trust region ratio, ρn, is calculated at 
the new candidate point xn*, as

ρn=(F(xn)high-F(x^*n)high)/(F(xn)scaled-F(x^*n)
scaled 				                                     (2)

first and second order multiplicative and additive scaling 
methods is presented.

2.1 VARIABLE FIDELITY (VF) IN DESIGN

In the design process a common engineering practice 
is to drive the preliminary design using lower fidelity 
models as surrogates of expensive high fidelity 
simulations. Higher fidelity models are then used in 
the final design stages to refine the design. However, 
using automated optimization methods at this stage 
may still require enormous computational resources. 
The variable fidelity model management framework 
addresses this problem by incorporating both models, 
the lower fidelity model and the higher fidelity model, 
into one optimization framework [13]. The low fidelity 
models are scaled to approximate the simulations results 
based on high fidelity models. Therefore, optimization 
can be performed using mainly low fidelity simulations, 
reducing the overall computational cost, while requiring 
only a few high fidelity simulations to update a scaling 
function that drives the low fidelity simulations towards 
the optimal design.

2.2 THE VARIABLE FIDELITY OPTIMIZATION ALGORITHM

The framework used in this investigation for variable 
fidelity optimization is depicted in Figure 1 [13], and is 
designed to reduce the number of high fidelity function 
calls during the optimization process by using a scaling 
function and lower fidelity models. The following steps 
are the basic steps of the framework:

Figure 1. Variable fidelity model management framework.

Step 1 (Initialization): At the starting design point 
x0, the objective function is evaluated using both 
fhigh(x0) and flow(x0), the high and low fidelity models 
respectively. All of the high and low fidelity inequality 
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of convergence.

2.3.1 MULTIPLICATIVE SCALING MODEL

This method was devised by Alexandrov and Lewis 
[15] based on [16]. For the first order multiplicative 
scaling method see [17], and for multiplicative second 
order scaling see [18,19]. As described in step 3 from 
the variable fidelity optimization algorithm, a given set 
of high and low fidelity models, fhigh(x) and flow(xr), 
where (xr  x), can be matched by multiplying the low 
fidelity model by an unknown function β(x), which is 
called the multiplicative scaling function. This is posed 
mathematically as 

fhigh (x)=β(x) flow (x^r)      	                                (6)

Solving for the unknown multiplicative scaling 
function results in

β(x)=fhigh (x) /flow (x^r)    	                                (7)

From inspection of Equation (7), it is shown that the 
function β(x) is the scaling ratio of the high fidelity model 
to the low fidelity model, and when it is multiplied by the 
low fidelity model, the high fidelity model is achieved.
However, the exact scaling function β(x) is not known 
and must be approximated.

2.3.2 FIRST ORDER AND SECOND ORDER MULTIPLICATIVE 
SCALING. 

At a given design point, for example the current design, 
the scaling function is defined as

β(xn )=fhigh (xn )/flow (xn^r)			    (8)

This scaling factor at any other point can be approximated 
using a Taylor series to first order

β ̃(x)≈β(xn )+ ∇ β(xn )^T  (x-xn)	                                (9)

To evaluate this, the gradient information is needed and 
can be obtained by differentiating Equation (8), resulting 
in

	                                                                                      (10)

In Equation (2), F()high and F()scaled are the penalty 
functions for the high and scaled low fidelity models, and 
the point xn is the current best design at iteration n. The 
trust region size is governed by the following standard 
rules [14]:

                       c1∆n:ρn≤R1 Vρn≥R_3
∆(n+1)={∆n:R1<ρn>R2
                           Γ∆n:R2<ρn>R3 )

In Equation (3), Γ=c2  if  ‖‖x^*n-xn ‖‖∞=∆n, 
otherwise Γ=1. A typical set of values for the range 
limiting constants are R1=0.25, R2=0.75 and R3=1.25, 
while the trust region multiplication factors are typically 
c1=0.3 and c2=2. If ρ is near one, the approximation is 
quite good. If ρ is near zero, then the approximation is 
not as good, but it still captures the minimization trend. 
If ρ is negative, then the point is a worse design. In this 
case the point is rejected, the trust region size is reduced 
by the factor c1, and the algorithm returns to step 4. As 
long as ρ>0, the point is accepted and the algorithm 
proceeds to step 7.

Step 7 (Convergence Test): Convergence can be 
determined by the following stopping criterion:

‖‖fhigh (xn )-fhigh (xn-1) ‖‖/ ‖‖fhigh (xn-1) ‖‖ 
<ε_f     (4)

‖‖xn-xn-1)‖‖ /  ‖‖ xn-1 ‖‖ <ε_x                                      (5)

In Equations (4) and (5), εf and εx are tolerances 
supplied by the user, and n is the current iteration 
counter. If any of the two inequalities in Equations (4)-(5) 
at the current point are true, the algorithm is considered 
converged. If the convergence test is true, then the final 
design is found, otherwise, the algorithm returns to step 

2..3 SCALING METHODS

The additive and multiplicative scaling models are used 
to construct an unknown scaling function to update the 
lower fidelity model, which in turn, will approximate the 
higher fidelity model. Each method can be modeled 
as first order or second order, and the goal is to match 
the gradient and curvature of the high fidelity model 
respectively. It is important to remember that at least 
first order matching between the scaled low fidelity 
model and the high fidelity model is required for proof 
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where m is the number of design variables.Therefore, 
a first order update on the low fidelity model is: 

fhigh≈β ̃(x) flow                                                                  (11)

This model ensures that at the initial design point, 
the updated low fidelity model matches the function 
and the gradient of the high fidelity model. The identical 
process is done in order to scale each constraint.

An analogous approach to the first order method 
is followed to obtain the multiplicative second order 
scaling method. The scaling factor can be approximated 
using a Taylor series to second order

β ̃(x)≈β(xn)+∇β(xn)^T  ∆x+1/2 ∆x^T  ∇^2 β(xn)∆x                             
                                                  (12)

 
To evaluate Equation (12), the Hessian information is 

needed and can be obtained by differentiating Equation 
(10). Computing this symmetric full rank matrix would 
be quite expensive; therefore, Hessian update methods 
such as BFGS and SR1 can be used to compute these 
terms. Now a second order update on the low fidelity 
model can be obtained, and it has the same form as in 
the first order method (Equation (11)).

2.3.3 ADDITIVE SCALING MODEL
 
The additive method was presented by Lewis and Nash 
[20]. For additive second order scaling see [18,19].

A given set of high and low fidelity models, fhigh(x) 
and flow(x^r), where (x^r  x), can also be matched by 
adding the low fidelity model to an unknown function 
γ(x). This is expressed mathematically as.

fhigh (x)= flow (x^r) + γ(x)		                 (13)

In Equation (13), solving for the additive scaling function 
results in

 γ(x)=fhigh (x)-flow (x^r) 			   (14)

It is clear that when this function is added to the low 
fidelity model, the response of the high fidelity model is 
obtained.

2.3.4 FIRST ORDER AND SECOND ORDER ADDITIVE 
SCALING 

In a similar fashion to the first order multiplicative scaling                                                                            

method, the additive scaling function at a given design 
point has the value 

 γ(xn)=fhigh (xn )-f_low (xn^r)		                   (15)

This additive scaling factor at any other point can be 
approximated using a Taylor series to first order

γ ̃(x)≈γ(xn)+∇γ(xn)^T  (x-xn)	                     	 (16)

which requires gradient information that can be 
obtained by differentiating Equation (15). This gives

∇γ(xn )=∇fhigh (xn)-∇flow (xn^r )	                  (17)

Therefore, a first order update on the low fidelity 
model is 

fhigh≈f_low+ γ ̃(x)	                                                     (18)

 This model ensures that at the current design point, 
the updated low fidelity model matches both the 
function and the gradient of the high fidelity model 
exactly, which is required for proof of convergence.

An analogous approach to the first order method 
is followed to obtain the additive second order scaling 
method. The scaling factor can be approximated using a 
Taylor series to second order

γ ̃(x)≈γ(xn)+∇γ(xn)^T ∆x+1/2 ∆x^T ∇^2 γ(xn)∆x                             
                                                     (19)

To evaluate this, the Hessian information is needed 
and can be obtained by differentiating Equation (17). 
Computing this symmetric full rank matrix would be 
quite expensive, that is why Hessian update methods 
such as BFGS and SR1 are used to compute these terms. 
Now a second order update on the low fidelity model 
can be obtained, and it has the same form as in the first 
order method (Equation (18)).

3 TEST CASES

This section will present the three problems that have 
been specifically constructed to provide a deeper 
understanding about a variable fidelity optimization 
algorithm and some scaling methods. In addition, the 
three test problems are used to compare the savings 
offered by each scaling method and their convergence.

Two analytic problems were created to study the 
influence of having lower number of variables in the low



Programación Matemática y Software (2015) 7 (1): 45-57. ISSN: 2007-3283

50

fidelity model, and of being of lower order, with respect 
to the high fidelity model, where one problem uses a 
two-dimensional high fidelity model of degree 6, and 
the other uses a four-dimensional high fidelity model of 
degree 4. A third problem, a high-performance low-cost 
structure, was created to study the influence of having 
significantly lower number of variables in the low fidelity 
model, with respect to the high fidelity model.

In order to solve the problems, first order and second 
order scaling for the multiplicative and additive methods 
were implemented in the variable fidelity framework. 
Traditionally the cost of the second order methods has 
been prohibitive. In order to completely avoid the extra 
function calls required to compute the symmetric full 
rank Hessian matrix, consecutive first order information 
is used to approximate it. Two of the most popular 
methods to approximate the Hessian are the BFGS and 
SR1 methods. In all test problems, all gradient information 
was obtained using forward finite differences.

In this investigation, an important question that is 
intended to be answered is whether or not the results 
and behavior of the scaling methods, in terms of 
convergence and required high fidelity functions calls, 
would be similar in all test problems while keeping 
constant certain characteristics (difference in number 
of variables and degree of nonlinearity between the 
HF and LF models). In addition, the three proposed test 
problems are intended to help in analyzing a variety of 
case study scenarios, in order to be able to decide what 
type of scaling method is preferred, depending on the 
case study at hand and the difference between the high 
and low fidelity models.

In order to compare the methods, the number of high 
fidelity function calls was computed for each method. 
For comparison purposes, the number of function calls 
needed for a standard SQP optimization performed 
on the high fidelity model alone is also presented for 
each problem. In addition, the results will show how 
a reduction in the design cycle time can be obtained 
by using a cheap and simple low fidelity model, while 
reducing the number of high fidelity function calls and 
achieving convergence to the high fidelity optimal 
design.

Analytic Problem 1
This problem is similar to the two dimensional model 
presented in [13], and aims to study the influence of 
having lower number of variables in the low fidelity 
model, and of being of lower order, with respect to the 
high fidelity model.
The high fidelity model is a degree four high fidelity 

model with four design variables. On the other hand, 
the most complex low fidelity model is a variation of 
the high fidelity model, which adds linear and nonlinear 
noise factors to change the shape of the design space 
and location of the optima.

Table 1 shows the high fidelity (HF) model, and 
fourteen low fidelity (LF) models with variable 
complexity, where the most complex is four dimensional 
of degree four, and the less complex is a constant. Note 
that constraints are not shown for all the low fidelity 
models, however constraints are considered equal 
among models with equal number of design variables.

Table 1. High fidelity model and low fidelity models for 
test problem 1.

The variable fidelity model management framework 
used separately the HF model with each of the 14 LF 
models, which resulted in 14 case studies. For all these 
cases, the initial design point considered was [5,5,5,5]
T, and the design variables were bounded between 0.5 
and 8. In addition, all the methods converged to the 
same solution, the optimum of the high fidelity model, 
and all used the same convergence criteria of εx = εf = 
0.0001.

The use of the SQP optimizer on the high fidelity 
model resulted in the optimum design of [2.3, 1.9, 2.7, 
1.5]T, with function value of 102.8, and a total of 13          
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iterations and 82 function evaluations were required for 
convergence.

Figure 2 shows the number of high fidelity function 
calls required by the variable fidelity model management 
framework for the 14 cases studies, as a result of using the 
aforementioned multiplicative (Mul) and additive (Add) 
scaling methods (first order, second order BFGS, and 
second order SR1). Also, for comparison purposes with 
the SQP results, the 82 high fidelity function evaluations 
required by the SQP optimizer are represented by a 
horizontal red line. In addition, this figure shows that the 
most competitive methods with respect to the required 
SQP HF function evaluations are: second order additive 
BFGS (Add BFGS), second order additive SR1 (Add SR1), 
and first order additive (Add 1st).

Figure 2. Variable Fidelity Optimization results for analytic 
test problem 1.

The results from Figure 2 can be summarized in 
Table 2, where the best scaling methods can be easily 
identified for case scenarios where there could be a small 
or big difference between the HF and LF models. In the 
last section, the results from Table 2 will be compared to 
the results obtained in the other test problems to get to 
a final conclusion.

Table 2. Best scaling methods for different case scenarios

3.2 ANALYTIC PROBLEM 2

The Barnes Problem [21] will be used as a high fidelity 
model to study the influence of having lower number 
of variables in the low fidelity model, and of being of 
lower order, with respect to the high fidelity model. The 
problem consists of a degree six high fidelity model with 
two design variables, and even though the problem has 
only two design variables, the high-order nonlinearities 
make it challenging to solve.

Table 3 shows the high fidelity (HF) model, and 13 
low fidelity (LF) models with variable complexity, where 
the most complex is two dimensional of degree six, and 
the less complex is a constant. Note that constraints are 
not shown for all the low fidelity models, but constraints 
are equal among models with equal number of design 
variables.

The variable fidelity model management framework 
used separately the HF model with each of the 13 LF 
models, which resulted in 13 case studies. For all these 
cases the initial design point considered was [30,30]T, 
and the design variables were bounded between 0 and 
70. In addition, all the methods converged to the same 
solution, the optimum of the high fidelity model, and all 
used the same convergence criteria of εx = εf = 0.0001.

The use of the SQP optimizer on the high fidelity 
model resulted in the optimum design of [49.5, 19.6]
T, with function value of -31.6451, and a total of 9 
iterations and 30 function evaluations were required for 
convergence.

Table 3. High fidelity model and low fidelity models for 
test problem 2.
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Figure 3 shows the number of high fidelity function 
calls required by the variable fidelity model management 
framework for the 13 case studies, as a result of using the 
aforementioned multiplicative (Mul) and additive (Add) 
scaling methods (first order, second order BFGS, and 
second order SR1). Also, for comparison purposes with 
the SQP results, the 30 high fidelity function evaluations 
required by the SQP optimizer are represented by a 
horizontal red line. In addition, this figure shows that 
the best method with respect to the required SQP HF 
function evaluations is the second order additive SR1 
(Add SR1), but in general all the other methods are very 
competitive, depending on the type of LF model.

Figure 3. Variable Fidelity Optimization results for analytic 
test problem 2.

The results from Figure 3 can be summarized in 
Table 4, where the best scaling methods can be easily 
identified for case scenarios where there could be a small 
or big difference between the HF and LF models. In the 
last section, the result from Table 4 will be compared to 
the result obtained in the other test problems to get to a 
final conclusion.

Table 4. Best scaling methods for different case scenarios.

3.3 Structural Optimization Problem

This is a structural optimization problem in which the 
objective of the design is to minimize the weight of the 
structure while maximizing the payload capability. The 
multi-objective optimization is transformed into a single 
objective optimization via a cost-performance index. 
The problem aims to study the influence of having sig-
nificantly lower number of variables in the low fidelity 
model, with respect to the high fidelity model. Figure 
4 and Figure 5 show the physics-based high and low 
fidelity structures to be optimized respectively.

Figure 4. Physics-based high fidelity structure.

The high fidelity model was introduced in [22-23] and 
consists of a total of 17 design variables (cross sections, 
trusses topology and payloads) and 13 inequality 
constraints. The objective is to find the size and shape 
of the truss such that the weight (Wtot) of the structure 
is minimum (low cost) and the loads (Pi) it is capable of 
sustain and the payload (Mi) it carries are a maximum 
(high performance). This multi-objective problem is 
formulated as a single objective problem by defining 
a cost-performance index (CPI) which includes each of 
the objectives as shown in Equation (20). The design 
variables in this model are the length of the rectangular 
first bay (L1) and the top and bottom lengths of the 
outer bay (L2, L3), the masses (payload) placed on all 
the unconstrained nodes (M1-4), and the areas of truss 
members (A1-10).

The design is decomposed into three disciplines or 
contributing analysis. The configuration design calculates 
the weight of the structure (Wtot) and the loads (Pi) 
applied to the structure. The structural design group 
calculates the deflections (δi) and stresses (σi) of the 
truss members. This analysis is performed using a finite 
element code in which the truss members are modeled 
as rod elements capable of sustaining axial loads only. 
A dynamic response design subspace calculates the 
fundamental frequency (fn1) of the structure.
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The structural material used is Aluminum, with the 
following properties: elastic modulus E= 70 GPa, yield 
strength σy=95 MPa, and density ρ=2770 kg.m-3.

The high fidelity problem is stated as follows [22,23]:

M i n i m i z e : f h i g h ( x ) = C P I = w 1 W t o t + ( w 2 /
(∑Pi)+(w3/∑Mi)

Subject to:    g1=1-(Mtot )min/(∑Mi )≥0

g2=1-(Ptot )min/(∑Pi )≥0

g_3=1-f(n1,min)/fn1 ≥0	

g4-13=1-|σ1-10 |/σy ≥0

M^(1)(i)≤Mi≤Mi^(u)    i=1,..,4

L^(l)(k)≤Lk≤Lk^(u)(k)    k=1,..,3

A^(l)(m)≤Am≤Am^(u)(m)    m=1,..,10

where w1=0.003, w2=106, w3=3.5x106, (Mtot)min=2600 
kg, (Ptot)min=50,000 N, fn1,min=15 s-1, M(l)1-4= 100 
kg, M(u)1-4=3,000 kg, L(l)1-3=2 m, L(u)1-3=30 m, A(l)1-
10=5x10-4 m2, A(u)1-10=0.01 m2. The loads P1-4 are 
defined to be functions of the lengths of the bays L1-3 
and the payload masses M1-4:

P i = ∑ ^ ( 3 ) ( k ) = 1 a ^ ( i ) ( k ) ( L k / L r e f ) ^ ( -
b(k^i))+⋯∑^4(j)=1c^i(j) (Mj/Mref )^(d^i(j) )    (21)

with Lref= 10 m, Mref=650 kg. The coefficients a,b,c, and 
d were taken from [22,23].
The initial design point considered for all case studies 
was [10,10,10,800,800,800,800,0.002,0.002,0.002,0.002,0
.002,0.002,0.002,0.002,0.002,0.002]T. 

The use of the SQP optimizer on the high fidelity 
model resulted in the optimum design of 
[2,3.5,2,830.6,3000,3000,3000,0.0005,0.01,0.0005,0.00
21,0.0005,0.0005,0.0005,0.0005, 0.0005, 0.0005]T, with 
function value of 358.3, and a total of 25 iterations and 
453 function evaluations were required for convergence, 
see Table 5. The convergence criteria used for all case 
studies related to the structural optimization problem 
are εx = εf = 0.0001.

The physics-based low fidelity multi-objective 
problem is formulated as a single objective problem, 
which includes each of the objectives as shown in 
Equation (22). In order to relate the high to the low 

fidelity model, a correspondence among the variables of 
both models was chosen. Figure 5 shows the low fidelity 
structure, and it consists of a total of 8 design variables: 
cross sections (A1, A2, A4 and A8), trusses topology (L1 
and L3) and payloads (M1 and M4). 

The low fidelity problem is stated as follows:

Minimize flow (x^r )=CPI=w1 Wtot+w2/(∑Pi )+w3/
(∑Mi )

Subject to:  g1=1-((Mtot )min/(M1+M4 ))≥0

g2=1-((Ptot)min/(P1+P4 ))≥0

g3=1-((fn1,min)/fn1) ≥0		                 (22)

g(4-7)=1-(|σ_1,2,4,8 |/σyield) ≥0

M^(l)(i)≤Mi≤Mi^(u)(i)    i=1,4

L^(l)(k)≤Lk≤Lk^(u)(k)    k=1,3

Am^(l)(m)≤Am≤Am^(u)(m)    m=1,2,4,8

where w1=0.003, w2=106, w3=3.5x106, (Mtot)min=2600 
kg, (Ptot)min=50,000 N, fn1,min=15 s-1, M(l)1,4= 
100 kg, M(u)1,4=3,000 kg, L(l)1,3=2 m, L(u)1,3=30 m, 
A(l)1,2,4,8=5x10-4 m2, A(u)1,2,4,8=0.01 m2. The loads 
P1,4 are defined to be functions of the lengths of the 
bays L1,3 and the payload masses M1,4. The loads are 
calculated using Equation (21), but L2, M2 and M3 are 
considered as zero.

Figure 5. Physics-based low fidelity structure.

Table 5 shows the number of high fidelity function 
calls required by the variable fidelity model management 
framework for the structural optimization problem (high 
and low physics-based fidelity models), as a result of 
using the aforementioned multiplicative and additive 
scaling methods (first order, second order BFGS, and 
second order SR1).
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The results show that the most noticeable difference 
among the methods is that the additive scaling method 
performs much better than the multiplicative scaling 
method, being the second order BFGS method the 
one that offered bigger savings. Furthermore, it can 
be observed that the multiplicative scaling second 
order BFGS and SR1 methods did not converge to the 
optimum solution. This is because optimization aborted 
due to the division by zero arising from the multiplicative 
scaling, in the objective function value of the low fidelity 
model. In addition, the last row shows that the use of 
the SQP optimizer on the high fidelity model required 
453 function evaluations for convergence, which is a 
higher value than the required by the multiplicative and 
additive scaling methods.

Table 5. High fidelity function evaluations for the 
structural optimization problem (high and low phy-
sics-based fidelity models).

4 CONCLUSIONS

The results of the problems show how models with 
different degree of nonlinearity and different number 
of design variables can be handled and integrated 
efficiently by the trust region model management 
framework, while significantly reducing the design cycle 
(number of high fidelity function calls) while achieving 
convergence.
It was observed in all test problems that the choice of 
the most suitable scaling methods to solve each of 
the problems is problem dependent, but still some 
points can be generalized. The following characteristics 
highlight in the results:

•The additive scaling method is a more robust 
method that performs better than the multiplicative 
scaling method in most cases.

•The first order methods proved to be very 
competitive in terms of savings, and converged to the 
optimum designs in all the problems.

•In some cases the multiplicative second order 
scaling method did not converge to the optimum. This 
is because optimization aborted due to the division 
by zero arising from the multiplicative scaling, in the 
objective function value of the low fidelity model.

•The use of scaling methods in the variable fidelity 
framework with HF and LF models that are significantly 
different (even in physics), could be as successful as, or 
more successful than using models of similar complexity 
or physics.

In addition, the obtained results can help to answer 
to the following case study scenarios, in order to be 
able to decide what type of scaling method is preferred, 
depending on the case study at hand:

•In case a LF model could be proposed, it would 
be desirable to build a LF model that consumed the 
shortest time possible, a cheap and simple model 
in number of variables and degree of nonlinearity is 
desired. In case it was considered a LF model as similar as 
possible to a scalar function (0 variables, 0 degree), the 
most appropriate methods would be the first order and 
second order (SR1) additive scaling methods.

•In case it is uncertain the degree of nonlinearity and 
the number of variables in the HF model, it would be 
desirable to use a robust scaling model. Some scaling 
methods that work well independently of the similarity 
between the HF and LF models are the first order and 
second order (SR1) additive scaling methods.

•In case there is a big, or small (or no) difference in the 
degree of nonlinearity between the HF and LF models. 
The suggested methods for a big difference would be 
the first order and second order (SR1) additive scaling 
methods. For a small difference the recommended 
methods would be the second order (SR1 and BFGS) 
additive scaling methods.

•In case there is a big, or small (or no) difference in the 
number of variables between the HF and LF models. The 
suggested methods for a big difference would be the first 
order and second order (SR1) additive scaling methods, 
and the first order multiplicative scaling method. For a 
small difference the recommended methods would 
be the second order (SR1 and BFGS) additive scaling 
methods.
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•In case there is a big difference in the degree of 
nonlinearity, and a big difference in the number of 
variables, between the HF and LF models, the most 
appropriate methods would be the first order and 
second order (SR1) additive scaling methods.

•In case there is a small (or no) difference in the 
degree of nonlinearity, and a small (or no) difference in 
the number of variables, between the HF and LF models, 
the most appropriate methods would be the second 
order (SR1 and BFGS) additive scaling methods, and the 
second order (BFGS) multiplicative scaling method.
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